全球旧事资料 分类
样大小的小圆圈按一定规律所组成的,若按此规律排列
下去,则第
个图形中有
个小圆圈.
三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹,并写出结论17.(4分)如图,AB是某条河上的一座桥,现要在河的下游点C处再建一座与AB平行
f的桥CD,请用直尺和圆规画出CD的方向.
四、解答题(本题满分68分)18.(16分)计算:
(1)(2a2b)2ab2÷(a3b);(2)(x1)(x1)(x21);(3)202022022×2018(用乘法公式计算);(4)(ab3)(ab3).19.(6分)先化简,再求值(x2y)2(xy)(x3y)÷(y),其中x=1,y
=.
20.(6分)完成下面的证明.
已知:如图,∠BAC与∠GCA互补,∠1=∠2,
求证:∠E=∠F
证明:∵∠BAC与∠GCA互补
即∠BAC∠GCA=180°,(已知)




∴∠BAC=∠ACD.(

又∵∠1=∠2,(已知)
∴∠BAC∠1=∠ACD∠2,即∠EAC=∠FCA.(等式的性质)


(内错角相等,两直线平行)
∴∠E=∠F.(

f21.(10分)如图所示,在一个边长为10cm的正方形的四个角都剪去一个大小相等的小正方形,当小正方形的边长由小到大变化时,图中阴影部分的面积也随之发生变化.(1)在这个变化过程中,自变量.因变量各是什么?(2)如果小正方形的边长为xcm,图中阴影部分的面积ycm2,请写出y与x的关系式;(3)当小正方形的边长由1cm变化到3cm时,阴影部分的面积发生了怎样的变化?
22.(8分)如图,∠AGF=∠ABC,∠1∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.
23.(10分)阅读理解:下面的图象表示2m的个位数字随m(m为正整数)变化的规律.请解答下列问题:
f(1)根据图象回答下列问题:
当m=4

为正整数)时,2m的个位数字是

当m=4
1(
为正整数)时,2m的个位数字是

当m=4
2(
为正整数)时,2m的个位数字是

当m=4
3(
为正整数)时,2m的个位数字是

(2)求:(21)(221)(241)(281)1的个位数字.
解:(21)(221)(241)(281)1
=(21)(21)(221)(241)(281)1
=(221)(221)(241)(281)1
=(241)(241)(281)1
=(2161)1
=216.
因为16=4×4,所以由(1)得,216的个位数字是6,即(21)(221)(241)(281)
1的个位数字是6.
类比应用:
(3)求:(21)(221)(241)(281)(2161)(2321)的个位数字.
24.(12分)如图①,在长方形ABCD中,AB=r
好听全球资料 返回顶部