0,
C2的极坐标方程为rcosq4cosqr0两边同乘r得rcosq4rcosqry
2
2
2
2
0即
4x;
2txa2R)代入曲线Cy24x(2)将曲线C1的参数方程标准化为(t为参数,a22y1t2
得
12
t
2
2t14a0,由D
2
2
4
12
1
4a0,得a0,
设AB对应的参数为t1t2,由题意得t12t2即t12t2或t12t2,
t12t21当t12t2时,t1t222,解得a,36tt214a12
ft12t29当t12t2时,t1t222解得a,4tt214a12
综上:a
136
或
94
.
23.考点:绝对值不等式解:(1)当m1时,fxx12x1,①x1时,fx3x22,解得1x②当
12x1时,f1243
;
x
x2,解得
12
x1;12
4.33
③当x
时,fx23x2,解得0x
;
综合①②③可知,原不等式的解集为x0x
(2)由题意可知fx2x1在2上恒成立,当x2时,44
f
3
x
xm2x1xm2x12x12x1,从而可得xm2,即
114
2xm22xm2x,且2xmax
110.4
,2xmi
0,因此
m
fr