全球旧事资料 分类
常用的巧算和速算方法【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为
12……99100
所以,1+2+3+4+……+99+100101×100÷25050。
“357………+9799?
35+7+……+9799(99+3)×49÷22499。
这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5尺布,最后一天织了1尺,一共织了30天。问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。这一解法,用现代的算式表达,就是1匹4丈,1丈10尺,90尺9丈2匹1丈。(答略)张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30天所织的布都加起来,算式就是5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这个式子反过来,则算式便是1………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”
1
f这一特点,那么,就会出现下面的式子:
所以,加得的结果是6×30180(尺)但这妇女用30天织的布没有180尺,而只有180尺布的一半。所以,这妇女30天织的布是180÷290(尺)可见,这种解法的确是简单、巧妙和饶有趣味的。
【分组计算】一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。例如:求1到10亿这10亿个自然数的数字之和。这道题是求“10亿个自然数的数字之和”,而不是“10亿个自然数之和”。什么是“数字之和”?例如,求1到12这12个自然数的数字之和,算式是1+2+3+4+567+891+01111+25l。显然,10亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将它们分组:0和999,999,999;1和999,99r
好听全球资料 返回顶部