全球旧事资料 分类
规则搜索、推理,而只须通过高速并行分布计算就可产生输出结果,这在某种意义上与人的思维更为接近。2模糊控制与遗传算法(GA)的结合遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机化搜索算法,由美国Michiga
大学的Holla
d教授首先提出。选择、交叉和变异是遗传算法的三个主要操作算子,它们构成了所谓的遗传操作10。遗传算法主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息,这使得它可以高效率地发现全局最优解或接近最优解,并避免陷入局部最优解,而且对问题的初始条件要求较少。目前利用遗传算法优化模糊控制器时,优化的主要对象是隶属函数和模糊控制规则集。根据优化对象的不同,现有的研究可分为以下几种类型:①已知模糊控制规则,利用GA优化隶属函数一般先设定隶属函数的形状,实践表明,三角形型、梯形型、高斯型等比较简单的隶属函数即可满足一般模糊控制器的需要。设定隶属函数形状后,确定待寻优的隶属函数参数,一般高斯型有2个参数,三角形有3个参数,梯形有4个参数。利用已有知识确定各参数的大致允许范围,并对参数进行编码,将所有的待寻优参数串接起来构成一个个体,代表一个模糊控制器。然后建立一定的性能指标,最后便可利用遗传算法的一般步骤进行寻优。②已知
f隶属函数,利用GA优化模糊控制规则事先确定输入输出隶属函数的形状和各参数,将每个输入输出变量划分为一定数量的模糊子集,从而确定最大可列举规则数,将一个规则表按一定的顺序展开为一维,并编码为一个个体。随机地选择一定数量的个体作为初始群体,对这些个体进行遗传操作,实现控制规则的优化8。③同时优化隶属函数和模糊控制规则隶属函数和模糊控制规则不是相互独立而是相互联系的,因此很多学者认为固定隶属函数优化模糊控制规则或固定模糊控制规则优化隶属函数的做法人为地割裂了这种联系,使优化得到的隶属函数或控制规则失去了原来的意义,建议应该同时对二者进行调整,并在这方面做了一些工作。3模糊控制的发展前景在模糊控制的发展初期,大多数学者的主要精力放在模糊控制的应用研究上,在很多领域取得辉煌的成果。但与应用的成果相比,模糊控制的系统分析和理论研究却没有显著进展,以至于西方的一些学者对模糊控制的理论依据和有效性产生疑虑。1993年7月,在美国第十一届人工智能年会上,加州大学圣地亚哥分校计算机科学和工程系助教授ClarlesElka
博士的一篇题为“模糊逻辑似是r
好听全球资料 返回顶部