一些学者用一组P矩阵代替文献12中李亚普诺夫函数的一个公共矩阵P,构造一个逐段近似平滑的二次型李亚普诺夫函数,用于稳定性分析4。每一个矩阵P仅对应一个子系统,并表明
f当且仅当一组合适的Riccati等式有正定对称解,且能得到这些解时,模糊控制系统才是全局稳定的。使用李亚普诺夫线性化方法,Yi
g建立了包括非线性对象的TS模糊控制系统局部稳定性的必要和充分条件。另外,一种在大系统中使用的向量李亚普诺夫直接方法,被用于推导多变量模糊系统的稳定性条件;李亚普诺夫第二方法被用于判别模糊系统量比因子选择的稳定性;波波夫一李亚普诺夫方法被用于研究模糊控制系统的鲁棒稳定性。但是,李亚普诺夫的一些稳定性条件通常比较保守,即当稳定性条件不满足时,控制系统仍是稳定的。2基于滑模变结构系统的稳定性分析方法由于模糊控制器是采用语义表达,系统设计中不易保证模糊控制系统的稳定性和鲁棒性。而滑模控制有一个明显的特点,即能处理控制系统的非线性,而且是鲁棒控制。因此一些学者提出设计带有模糊滑模表面的模糊控制器,从而能用李亚普诺夫理论来获得闭环控制系统稳定性的证明。Palm和Dria
kov采用滑模控制的概念分析了增益规划的闭环模糊控制系统的稳定性和鲁棒性。另有一些学者用模糊推理来处理控制系统的非线性和减少控制震颤,使得基于李亚普诺夫方法可保证控制系统的稳定性。基于变结构系统理论,可以得到控制系统的跟踪精度和模糊控制器的IO模糊集映射形状之间的关系,从而可以解释模糊控制器的鲁棒性和控制性能。文献等研究了基于变结构控制框架的模糊控制系统的稳
f定性,通过输出反馈的模糊变结构控制,并用李亚普诺夫方法证明了闭环控制系统是全局有界输入有界输出稳定的。若使用变结构控制类型的模糊规则集,模糊控制器从语义和定量上可显示出变结构的特性。为便于李亚普诺夫稳定性判据能指导设计和调整模糊控制器,文献推导出模糊控制器的具体数学表达式。3描述函数方法描述函数方法可用于预测极限环的存在、频率、幅度和稳定性。通过建立模糊控制器与多值继电控制器的关系,描述函数方法可用于分析模糊控制系统的稳定性2。另外,指数输入的描述函数技术也能用于研究模糊控制系统的暂态响应。虽然描述函数方法能用于SISO和MISO模糊控制器以及某些非线性对象模型,但不能用于三输入及以上的模糊控制器。并且由于这种方法一般应用于非线性系统中确定周期振荡的存在性,因此只是一种近似稳定r