同的小正方形组成的网格中,点A、B、C、D都在这些在平面直角坐标系中,直线l:yx1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A
B
C
C
1,使得点A1、A2、A3…在直线l上,点C1、C2、C3…在y轴正半轴上,则点B
的坐标是.
三.作图题(共1小题,满分4分)15.(4分)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1使它与△ABC的相似比为2,则点B的对应点B1的坐标是.
四.解答题(共10小题,满分0分)16.计算:2cos230°2si
60°×cos45°.
第3页(共6页)
f19.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.
20.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:1414,1732)
21.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面AA1的距离为8m.(1)按如图所示的直角坐标系,求表示该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m,宽为4m,如果该隧道内设双向行车道,那么这辆贷车能否安全通过?
第4页(共6页)
f22.如图,已知AC是矩形ABCD的对角线,过AC的中点O的直线EF,交BC于点F,交BC于点F,交AD于点E,连接AF,CE.(1)求证:△AOE≌△COF;(2)若EF⊥AC,试判断四边形AFCE是什么特殊四边形?请证明你的结论.
23.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所..示.(1)求y与x之间的函数关系式;(2)当增种果树多少棵时,果园的总产量w(千克)最大?最大r