2019年全国硕士研究生招生考试初试自命题试题
科目名称:数学分析(√A卷□B卷)科目代码:840考试时间:3小时满分150分
可使用的常用工具:√无□计算器□直尺□圆规(请在使用工具前打√)
准考证号码:密封线内不要写题
注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考
完后试题随答题纸交回。
一、选择题共5小题,每小题6分,共30分
1、lim2019si
2019x(xx
A;
B0;
)C1;D2019
2、若级数a
2和b
2都收敛,则级数a
b
(
)
1
1
1
A一定绝对收敛;C一定发散;
B一定条件收敛;D可能收敛也可能发散
3、反函数组xxuv的偏导数与原函数组uuxy的偏导数之间的
yyuv
vvxy
关系正确的是(
)
报考专业:
Axu1;ux
Bxuyu1;uxuy
Cxuxv2;Dxuxv1
uxvx
uxvx
4、设Dx2y21,f是D上的连续函数,则fx2y2d()
D
A21fr2dr;0
B41rfrdr;0
C21rfrdr;0
D41fr2dr0
5、由分片光滑的封闭曲面所围成立体的体积V(
)
姓名:
A
13
xdydz
ydzdx
zdxdy
;
B
13
xdydz
ydzdx
zdxdy
;
C
13
zdydz
xdzdx
ydxdy
;
D
13
ydydz
zdzdx
xdxdy
f二、计算题共3小题,每小题15分,共45分
1、求极限lim135L2
1
246L2
2、求极限
limsec
x
x
ta
x
2
3、计算L2xy5yzds,其中L是空间连接点101和点032的线段.
三、解答题共3小题,每小题15分,共45分
1、已知伽马函数sxes1xdx,证明:s0有s1ss0
2、求lim21dx
021x2
3、设
f
x
x00
x
x
,求0
f
x
的傅里叶级数展开式.
四、证明题15分
设x0求证:01,使得xetdtxex,且lim1
0
x
五、证明题15分
设a0a1a2L
1
1
a
12
a
0,试证方程
a0x
a1x
1a2x
2La
1xa
0
在0与1之间至少存在一个实数根。
ff2019年数学分析(A卷)答案
准考证号码:密封线内不要写题
注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考
r