被普遍接受的公认的研究生物大分子尤其是超分子体系结构的有效研究手段,成为连接生物大分子和细胞的纽带和桥梁。
f2冷冻电镜发展过程及分类
21冷冻电镜发展过程
冷冻电子显微镜技术(cryoelectro
microscopy)是在20世纪70年代提出的,早在20世纪70年代科学家们就利用冷冻电镜研究病毒分子的结构,首次提出了冷冻电镜技术的原理、方法以及流程的概念。到了20世纪90年代,随着冷冻传输装置、场发射电子枪以及CDD成像装置的出现,冷冻电镜单颗粒技术出现。21世纪初,冷冻电镜技术进一步发展,利用三维重构技术获得了二十面体病毒的三维结构,但此时冷冻电镜的分辨率水平依然没有得到突破,这限制了冷冻电镜在生物大分子领域的应用,虽然冷冻电镜和X射线晶体学、核磁共振被称作结构生物学研究的三大利器,但不得不承认冷冻电镜是三者当中最弱的一种技术手段,在现在已解析的一千多种膜蛋白结构当中,90以上都采用的是X射线晶体学方法,核磁共振在小分子量的蛋白结构解析中也发挥了重要的作用,而冷冻电镜在蛋白结构解析当中所起的作用微乎其微。
然而2013年12月5日,美国加州大学旧金山分校副教授程亦凡与同事DavidJulius两个实验室合作,采用单电子计数探测器,以近原子分辨率(34埃),确定了在疼痛和热知觉中起中心作用的一种膜蛋白TRPV1的结构,这一振奋人心的成果让研究人员们开始重新审视冷冻电镜在结构生物学研究中的所能发挥的作用。毕竟和X射线晶体学方法相比,它所需的样品量很少,也无需生成晶体,这对于一些难结晶的蛋白质的研究带来了新的希望。蛋白质TRPV1结构的确定标志着冷冻电镜正式跨入“原子分辨率”时代。
22冷冻电镜分类
目前我们讨论的冷冻电镜基本上指的都是冷冻透射电子显微镜,但是如果我们以使用冷冻技术的角度定义冷冻电镜的话,冷冻电镜主要可以分为冷冻透射电子显微镜、冷冻扫描电子显微镜、冷冻蚀刻电子显微镜。
221冷冻透射电子显微镜
冷冻透射电镜(CryoTEM)通常是在普通透射电镜上加装样品冷冻设备,将样品冷却到液氮温度(77K),用于观测蛋白、生物切片等对温度敏感的样品。通过对样品的冷冻,可以降低电子束对样品的损伤,减小样品的形变,从而得到更加真实的样品形貌。
一台冷冻透射电镜的价格在600万美元左右,价格极其昂贵,它的优点主要体现在以下几个方面:第一是加速电压高,电子能穿透厚样品;第二是透镜多,光学性能好;第三是样品台稳定;第四是全自动,自动换液氮,自动换样品,自动维持清r