全球旧事资料 分类
.复习提问,引入新课问题1回顾一次函数和二次函数的学习过程,在学习了反比例函数的有关概念和性质后,接下来应该研究什么?如何研究?师生活动:学生思考,教师与学生共同回顾正比例函数、一次函数及二次函数的研究过程,指出这些函数在生活中有广泛的应用,以引起学生对本节课的研究内容及研究方法的关注.设计意图:进一步熟悉函数学习的基本过程和方法,点明研究的内容.2.创设情境,自主学习问题2市煤气公司要在地下修建一个容积为10m的圆柱形煤气储存室.(1)储存室的底面积S(单位:m)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,公司临时改变计划,把储存室的深度改为15m.相应地,储存室的底面积应改为多少?(结果保留小数点后两位)师生活动:学生仔细读题,独立思考,弄清这是一个关于圆柱体积的应用题回忆圆柱体的体积公式,借助其体积公式vsh,尝试确定(1)问中的函数关系.教师可以通过设置以下问题引导学生逐步分析最后通过建立反比例函数模型解决问题.(1)这个问题可以转化为数学问题吗?需要用到哪些知识?(2)在(1)中包含哪些量哪些是常量哪些是变量你能写出S与d的关系式吗?你能从函数的角度来解释这个关系式吗?(3)在(2)中把储存室的底面积S定为500m,从函数角度来看,你怎么理解?把储存室的深度改为15m又是什么意思呢?在此活动中,教师应重点关注:①能否从实际问题中抽象出函数模型;
22243
f②能否利用函数模型解释实际问题中的现象;③能否独立思考,自主探索.设计意图:让学生独立思考,自主探索,从实际问题中抽象出数学问题,通过寻找变量之间的关系,建立反比例函数模型.体验反比例函数是有效描述现实世界的重要手段.3.新知应用,解决问题问题3码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况要求船上的货物不超过5天卸载完毕那么平均每天至少要卸载多少吨师生活动:学生在独立思考教师适时提问,在这个问题中常量是什么?变量是什么?是否符合反比例函数的模型?如果是反比例函数,那么其比例系数是什么?在此基础上,学生写出平均卸货速度v(单位:吨/天)与卸货天数tr
好听全球资料 返回顶部