全球旧事资料 分类
80v1melsebm0e
de
dk1form1le
gifbkbmkme
d
fe
dX3150150Y3ta
120pi180X3bkplotX3Y3holdo
求Dtdt线form1le
gifv1m0bmSmta
30pi180v1melsebm0e
de
d
1form1le
gifb
bm
me
de
dX150150Yta
30pi180Xb
plotXYholdo
sS轴z200200plot0zrholdo
求B0d0线Zta
120pi180XplotXZgrido

f得最小基圆对应的坐标位置大约为(4080)经计算取偏距e40mm,r0894mm
f4滚子半径及凸轮理论廓线和实际廓线为求滚子许用半径,须确定最小曲率半径,以防止凸轮工作轮廓出现尖点或出现相交包络线,确定最小曲率半径数学模型如下:
dxd2dyd232dxdd2yd2dydd2xd2
其中:
dxddsdesi
s0scosdyddsdecoss0ssi
d2xd22dsdecosd2sd2s0ssi
d2yd22dsdesi
d2sd2s0scos
利用上式可求的最小曲率半径,而后可确定实际廓线。理论廓线数学模型:
fxs0ssi
ecosys0scosesi

凸轮实际廓线坐标方程式:
xxrtyyrtdxddxd2dyd2dyddxd2dyd2
其中rt为确定的滚子半径。根据上面公式,利用matlab编程求解,其代码如下:
求理论廓线e40基圆半径r0894r0894S080e40J0ata
S0eXr0costYr0si
tX1ecostY1esi
tX0S0Ssi
tecostY0S0Scostesi
tplotXYX1Y1X0Y0
vsymsphi1phi2phi3phi4phi5s0100h110e50PI314159Phi05PI6Phis7PI6Phi0131PI18Phis12PIs1hphi15pi6si
2piphi15pi62piX1s0s1cosphi1esi
phi1Y1s0s1si
phi1ecosphi1XX1diffX1phi1XXX1diffX1phi12YY1diffY1phi1
fYYY1diffY1phi12forphi110PI180Phi0psubsabsXX12YY1215XX1YYY1XXX1YY1phi1phi11vvpe
ds2hX2s0s2cosphi2esi
phi2Y2s0s2si
phi2ecosphi2XX2diffX2phi2XXX2diffX2phi22YY2diffY2phi2YYY2diffY2phi22forphi22Phi0PI180PhispsubsabsXX22YY2215XX2YYY2XXX2YY2phi2phi22vvpe
dSmh1phi35pi9si
2piphi35pi92piX3s0s3cosphi3esi
phi3Y3s0s3si
phi3ecosphi3XX3diffX3phi3XXX3diffX3phi32YY3diffY3phi3YYY3diffY3phi32forphi33PhisPI180Phi01psubsabsXX32YY3215XX3YYY3XXX3YY3phi3phi33vvpe
ds40X4s0s4cosphi4esi
phi4Y4s0s4si
phi4ecosphi4XX4diffX4phi4XXX4diffX4phi4r
好听全球资料 返回顶部