正交频分复用技术的发展与应用
摘要:正交频分复用,英文缩写为OFDM,主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,然后调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样做可以减少子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,从而可以消除符号间的相互干扰。本文分析了主要正交频分复用的原理及使用过程中发现的优缺点,提出了自己的一些观点。
关键词:多载波调制正交频分复用信道估计1、正交频分复用的发展史正交频分复用并不是才发展起来的新技术,其应用已有40余年的历史,在上个世纪60年代就已经有人提出了使用平行数据传输和频分复用的概念。正交频分复用是一种特殊的多载波传输方案,它应用离散傅里叶变换和离散傅里叶逆变换的方法解决了产生多个互相正交的子载波以及从子载波中恢复原信号的问题。这就解决了多载波传输系统发送和传送的难题。应用快速傅里叶变换和快速傅里叶逆变换更是使多载波传输系统的复杂度大大降低。从此正交频分复用技术开始走向实用。80年代,集成电路获得了突破性进展,大规模集成电路让快速傅里叶变换和快速傅里叶逆变换的实现不再是难以逾越的障碍,一些其它难以实现的困难也都得到了解决,自此正交频分复用走上了通信的舞台,逐步迈向高速数字移动通信的领域。90年代,由于技术的可实现性,正交频分复用的应用涉及到了利用移动调频和单边带信道进行高速数据通信,陆地移动通信,高速数字用户环路,非对称数字用户环路,高清晰度数字电视和陆地移动广播等各种通信系统。1999年,国际电气与电子工程师协会通过了一个的无线局域网标准IEEE802lla,其中正交频分复用调制技术被采用为物理层标准,使得传输速率可以达54Mbps。这样,可提供25Mbps的无线ATM接口和10Mbps的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。2、正交频分复用的工作原理21时域和频域同步。正交频分复用系统对定时和频率偏移敏感,特别是实际应用中可能与频分多址、时分多址和码分多址等多址方式结合使用时,时域和频率同步显得尤为重要。与其它数字通信系统一样,同步分为捕获和跟踪两个阶段。在下行链路中,基站向各个移动终端广播式的发同步信号,所以,下行链路同步相对简单,较易实现。在上行链路中,来自不同移动终端的信号必须同步到达基站,才能保证子载波间的正交性。基站r