全球旧事资料 分类
内浇位置与主干型腔示意图1”图。同一个压铸件选择不同的内浇口位置和流向角,可以得到不同的主干型腔、非主干型腔和各自占有的面积百分数,图2中的壳体压铸时,由于内浇口的位置不同,得出不同的主干型腔和非主干型腔。图2a内浇口垂直于一侧壁,由于零件顶部的长方孔把两侧壁分开,结果是
f只有一侧为主干型腔;要充填另一侧壁,必须经浇道两端连接处,最后两股液流汇聚完成填充,这一部分就是非主干型腔。因主干型腔所占面积百分比不高,因此会产生大量废品,如图2a1。在图2b中,内浇口位置不作改变,只是把顶部长方孔用等壁厚的工艺筋连接起来,这样充填时金属熔体转向,沿筋板充填另一侧壁,使两侧壁都成了主干型腔,增大了主干型腔所占百分比,铸件质量也大幅度提高,如图2b1。在图2c中,零件与图2a相同,顶部方孔不加工艺筋,但将内浇口设置在零件一端,这样金属熔体从两侧壁同时进行充填,从而扩大了主干型腔百分比,保证了质量,提高了合格率。这是同一零件三种内浇口设置方案,证明内浇口位置的关键性。虽然计算机技术有助于选定内浇口位置,但计算机技术仅是一种方法,而内浇口位置设计仍不失为一项关键技术。3压铸工艺要点31pQ2图和压铸机的泵功率311金属压力、速度和流量之间的关系在原理上压铸机是一台液态金属泵,它在压力下将金属熔体输送到压铸模型腔内。泵的特性是输送功率体积流量,是压力的函数,这方面早在70年代,首先由澳大亚CSIRO做出有价值的开发工作,用pQ2图建立了一个有用的工具,根据铸件亦即模具的要求,决定机器的调整值,本来是用于热室压铸机的锌合金压铸件上,但很快就扩展到冷室机上。在原则上,现在从流体力学原理所熟知的压力与体积流量的关系,转移到压铸机的实际应用。根据伯努力方程,按照似稳流,金属流动速度为:式中:υ为流速,ms;p为流动压力,Nm3(1bas105Nm201MPa);ρ为液态金属密度,kgm3。由式(1)可得到压铸机压射单元有两个液压系统:一个是压射蓄能器压射驱动缸构成的液压系统;另一个是跟着这个系统随动的冲头压室喷嘴(热室机)直浇道横浇道内浇口组成的金属液压系统(metalhydraulicsystemmetallhydraulischesSystem)。对于金属液压系统,内浇口速度是υa,则式(2)变为:
金属压力愈高,在喷嘴及内浇口处的金属熔体的流动速度也愈快,但也必须考虑克服由于流动截面变化、方向改变和型壁粗糙度存在而产生的流动阻力,用阻力系数ξ来表示这些阻力之和。因此,r
好听全球资料 返回顶部