全球旧事资料 分类
-+25m,其中θ∈π2,π,则ta
θ的值为

A.-152
B152
53C.-12或-4
D.与m的值有关
答案A
解析已知si
θ=mm-+35,cosθ=4m-+25m,所以mm-+352+4m-+25m2=1所以m=8,满足
题意,ta
θ
=scio
sθθ
m-35=4-2m=-12故选
A
10.已知3cos2α+4si
αcosα+1=0,则si
s2iα
4-αs-i
cαosc4αosα=

A.-2B.2C.-12D12
答案D
解析∵3cos2α+4si
αcosα+1=0,
∴4cos2α+4si
αcosα+si
2α=0,
∴si
α+2cosα2=0,∴ta
α=-2
si
4α-cos4α
si
α
α-cosα
=si
αsi

-cos2αα-cosα
=si
αsi+
αcosα=1+ta1
α=12故选
D
二、填空题
11.xx福建泉州质检已知θ为第四象限角,si
θ+3cosθ=1,则ta
θ=________
答案-43
解析由si
θ+3cosθ2=1=si
2θ+cos2θ,得6si
θcosθ=-8cos2θ,又因为
4θ为第四象限角,所以cosθ≠0,所以6si
θ=-8cosθ,所以ta
θ=-3
12.xx福建漳州二模已知θ是三角形的一个内角,且si
θ,cosθ是关于x的方程4x2+px-2=0的两根,则θ等于________.
答案
3π4
解析由题意知si
θcosθ=-12,联立
si
2θ+cos2θ=1,si
θcosθ=-21,
si
θ=22,
得cosθ
=-
22
si
θ=-22,
或cosθ

22,
f2又θ为三角形的一个内角,∴si
θ0,则cosθ=-2,
∴θ=3π413.已知1-sic
oxsx=-13,则1+sic
oxsx的值是________.
答案-3解析∵si
2x+cos2x=1,∴si
2x=1-cos2x,即1-sic
oxsx=1+sic
oxsx,
∵1-sic
oxsx=-13,∴1+sic
oxsx=1-sic
oxsx=-3
14.在△ABC中,若si
2π-A=-2si
π-B,3cosA=-2cosπ-B,则C
=________
答案
7π12
si
A=2si
B,①解析由已知得
3cosA=2cosB,②
①2+②2,得2cos2A=1,即cosA=±22,

cosA=
22时,cosB=
32,又
A,B
是三角形的内角,
所以A=π4,B=π6,所以C=π-A+B=71π2
当cosA=-22时,cosB=-23
又A,B是三角形的内角,所以A=34π,B=56π,不符合题意.综上,C=71π2
三、解答题
15.已知-π2α0,且函数fα=cos32π+α-si
α1化简fα;2若fα=15,求si
αcosα和si
α-cosα的值.
1+cosα1-cosα
-1
解1fα=si
α-si
α
+cosα1-cos2α
2
-1=si
α
+si
α
1+sic
oαsα
-1=
si
α+cosα
2由fα=si
α+cosα=15,平方可得si
2α+2si
αcosα+cos2α=215,即
2si
αcosα=-2245
f∴si
αcosα=-1225∵si
α-cosα2=1-2si
αcosα=4295,又-π2α0,∴
si
αr
好听全球资料 返回顶部