金融系统应用比较广泛,成熟度较好,普及率仅次于平安城市应用,基于视频智能分析的银行安保系统是每个银行储蓄所,ATM机的必备系统。主要包括以下检测:人脸检测:人脸检测抓怕,用于人脸叠加、比对多人脸监测,用于ATM机取款检测脸部遮挡监测,用于盗抢等监测。滞留物检测:取款人遗留物检测、加装读卡器、非法粘贴广告。异常行为监测:徘徊、扭打、人员接近、长时间逗留。视频异常检测:视频遮挡、视频丢失监测,防止出现视频存储丢失,需要时无法检索安保视频。2交通行业智能分析场景实时提取各个城市路口监控视频中的车牌、车型、车标、颜色、驾驶者人脸等信息,通过分布式计算集群对大量车辆信息进行关联挖掘,即可生成整个城市交通状态的可视化网图,如道路拥堵情况,易于拥堵的时段、趋势,以及不同区域的车辆迁移路线,甚至根据时间、天气、节假日情况等信息预测交通状况,从而为城市交通决策、应急指挥提供精准、实时的参考数据和信息支撑。
f车牌识别:技术和应用已经比较成熟,准确率较高,用户体验已很好。拥堵检测:车速、车密度、排队长度、逆行、行人检测,交通事故检测抛,洒检测,车型、驾驶员检测。3群体事件分析对人群等目标的正常行为和异常行为进行分析。能够对区域或场景中群体的行为进行分析,如统计穿越出入口或指定区域人的数量和密度,识别人群的整体运动特征,包括速度、方向等检测公共场所是否有人员的聚集规模、奔跑、斗殴等异常行为,提前预警防止踩踏等恶性事件的发生。四、智能分析面临的问题及未来发展趋势1智能分析技术的难点智能分析技术面临的难点是:智能分析的准确率、智能分析对环境的适应性及不同场景使用的复杂性。1检测准确率达不到理想效果。视频分析技术的准确率达不到非常理想的效果,特别是实时报警类的应用,误报率和漏报率都是客户最关心的问题。如果误报太高,客户也接受不了,如果漏报,客户更加接受不了。特别是一些要求比较高的应用,只要有漏报,实际作用就微乎其微。
2智能分析对场景的要求较高,光照变化引起目标颜色与背景颜色的变化,可能造成虚假检测与错误跟踪。采用不同的色彩空间可以减轻光照变化对算法的影响,但无法完全消除其影响。
3安装调试复杂。智能分析应用产品几乎都需要按每一个应用场景进行不同的参数调试,而且会涉及到非常多的专业的参数调试。非专业人员根本无法调试出理想效果。
2大数据与智能分析的融合大数据与视频监控具有天然r