1问题重述
大气是指包围在地球外围的空气层,是地球自然环境的重要组成部分之一。人类生活在大气里,洁净大气是人类赖于生存的必要条件。一个人在五个星期不吃饭或5天不喝水,尚能维持生命,但超过5分钟不呼吸空气,便会死亡。随着地球上人口的急剧增加,人类经济增长的急速增大,地球上的大气污染日趋严重,其影响也日趋深刻,如由于一些有害气体的大量排放,不仅造成局部地区大气的污染,而且影响到全球性的气候变化。因此,加强大气质量的监测和预报是非常必要。目前对大气质量的监测主要是监测大气中SO2、NO2、悬浮颗粒物(主要为PM10)等的浓度,研究表明,城市空气质量好坏与季节及气象条件的关系十分密切。
附件给出城市A、B、C、D、E、F从2003年3月1日至2010年9月14日测量的污染物含量及气象参数的数据。
请运用数学建模的方法对下列问题作出回答:1找出各个城市SO2、NO2、PM10之间的特点,并将几个城市的空气质量进行排序。2.对未来一周即2010年9月15日至9月21日各个城市的SO2、NO2、PM10以及各气象参数作出预测。3.分析空气质量与气象参数之间的关系。4.就空气质量的控制对相关部门提出你的建议。
2问题分析
本题为生活中的实际问题,层层递进式提出四个问题,分别需要对空气污染因素以及气象参数进行分析求解。第一问为评价性问题,先从城市部个污染物特点出发,再到城市之间空气质量进行比较。第二问是预测性问题,通过对给出的数据进行分析,预测各项参数之后的趋势。第三问是寻找关联性问题,要求找出空气质量与气象参数之间的关系。第四问为开放型问题,可通过之前得出的结论或者相关文章及模型提出建议。21问题1
通过查阅资料,运用已有的API对各个城市的各项污染指标进行计算,得出各个污染指数API月平均的折线图,观察,得出各城市各项指标的特点。鉴于求解城市API时有一定的误差,故选择综合评价模型,对数据进行标准化处理之后,确定动态加权函数,对模型进行求解,排名。检验模型后确定结论的合理性。22问题2
预测模型主要有灰色预测,时间序列等模型。由所给数据以及问题可知该预测模型为时间序列。随机选取气象参数之一气温(tem)为例进行分析,先通过SPSS软件得到其时序图,观察其走势,对其做平稳化处理。然后以最小BIC为标准,构造模型,进一步应用SPSS软件求解,得出各项参数,并预测出2010年9月15日至2010年9月21日的数据。其余各城市各污染物浓度以及气象参数应用类似方法进行求解。最r