分
20(1)fx
xx
x1
2
f1f1
可得
0
m
0
fxxx1
2
(2)任取1x1x21,
5
ffx1fx2
x1x22x1x21
21
x1x221x2x121
x
21
1x221
xx
2
12
x
x2x12x1x21x221
21
x1x21x1x2
x
21
1x221
1x11,1x21又x1x2,x1x20fx1fx20
1x1x21
1x1x20
fx1fx2
fx在11上单调递增fx在11
上单调递增
(3)fx在,上的最大值为f33310
11
1
3
a3即可310
a
9即可10
21解:(1)a2a12a3a21由a
1a
成等差数列知其公差为1,故a
1a
2
11
3
1b2b12b3b21由b
1b
等比数列知,其公比为,2
1故b
1b
22
1
a
a
a
1a
1a
2a
2a
3a2a1a1
12
1
216
23
22
8
27
18
2
22
6
fb
b
b
1b
1b
2b
2b
3b2b1b1
1
12126223
112
k27k18k27k143k13k(3)假设k存在,使akbk2220222
则0
2
k27k143k124k2k27k14即k7k13222
2
∵k7k13与k7k14是相邻整数∴2
4k
Z,这与24kZ矛盾,所以满足条件的k不存在
T5112π-∴T2ωπ4632T
22解(1)由图象可知A2
1ππ将点2代入y2si
πx+得si
+1又332所以ππ故所求解析式为fx2si
πx+x∈R66
111aaπaπ(2)∵f∴2si
+即si
+2π2626336172ππaπaa2π∴cos-acosπ-2+-cos2+2si
+-1362626218
7
fr