全球旧事资料 分类
分别为s甲2与S乙2,则s甲2

2
S

(填“>”

“=”

“<”中的一个)
15.
(5分)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,
连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为

16.
(5分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正
3
f方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方
形ABCD.则正方形ABCD的面积为
.(用含a,b的代数式表示)
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12
分,第24题14分,共80分)
17.
(8分)计算:3√8√2.
1,
18.
(8分)解方程组:
37
19.
(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯
最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点
D离地面的高度DE.
(结果精确到01cm;参考数据si
70°≈094,cos70°≈034,si
20°
≈034,cos20°≈094)
20.
(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难
度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练
次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为
400秒.
(1)求y与x之间的函数关系式;
(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1y2)与(y2
y3)的大小:y1y2
y2y3.
4
f21.
(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.
(1)求证:△ABD≌△ACE;
(2)判断△BOC的形状,并说明理由.
22.
(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学
生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随
机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值)

参与度
02~04
04~06
06~08
08~1
录播
4
16
12
8
直播
2
10
16
12
人数
方式
(1)你认为哪种教学方式学生的参与度更高?简要说明理由.
(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在08及
以上的概率是多少?
(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在
04以下的共有多少人?
23.
(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连
接CD交AB于点M.E是线段CM上的r
好听全球资料 返回顶部