么他的“往返”决不会影响答案的准确性。
因为从起点站走到终点站,行人用的时间不一定被a和b都整除,所以他见到的公交车辆数也不一定是整数。故此,我们不让他从起点站走到终点站再返回。那么让他走到哪再立即返回呢?或者说让他走多长时间再立即返回呢?
取a和b的公倍数(如果是具体的数据,最好取最小公倍数),我们这里取ab。假如刚刚有一辆公交车在起点站发出,我们让行人从起点站开始行走,先走ab分钟,然后马上返回;这时恰好是从行人背后驶过第b辆车。当行人再用ab分钟回到起点站时,恰好又是从迎面驶来第a辆车。也就是说行人返回起点站时第(ab)辆公交车正好从车站开出,即起点站2ab分钟开出了(ab)辆公交车。
这样,就相当于在2ab分钟的时间内,行人在起点站原地不动看见车站发出了(ab)辆车。于是我们求出车站发车的间隔时间也是2ab÷(ab)2÷(1a1b)。
这样的往返假设也许更符合“发车问题”的情景,更简明、更严谨,也更易于学生理解和接受。如果用具体的时间代入,则会更加形象,更便于说明问题。
第13页共29页
f典型应用题行程问题
14
小学数学行程:发车问题的例题(一)
例1:如果A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进多次往返后,当全体学生到达B地时,马车共行了多少千米?
例2:某工厂每天早晨都派小汽车接专家上班有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?设人和汽车都作匀速运动,他上车及调头时间不记
例3甲乙两辆汽车分别从AB两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从AB两成出发,相向而行,甲车和乙车的速度比是5:4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?
第14页共29页
f典型应用题行程问题
15
小学数学行程:发车问题的例题(二)
例1有两个班的小学生要到少年宫参加活动,但只有一辆车接送。第一班的学生做车从学校出发的同时,第二班学生开始步行;车r