基础知识掌握得较好,学生的理解能力比较强.虽然初中已经经历了有理数加法的学习,但是对向量的学习还处于初期阶段,一些数学方法和数学思想的掌握还有待进一步加强。(二)知识层面1.学生初中已经学习过有理数加法、减法等运算并掌握了它们的运算率;
f2.掌握了向量、零向量及其共线向量的定义(三)能力层面1.具有物理学习中的力的合成基础;2.具有一定的数形结合和类比思想的基础.根据以上三个方面的分析,在学生已有的认知基础的条件下,学生可以自主完成求不共线的两个非零向量的和的作图,部分同学能够注意到零向量与数零的区别以及共线的两个向量的和的求法。但有些学生对平移向量依然在原图上处理,极易造成图形混乱。在具体操作过程中,需要老师的引导和帮助。教学难点:理解向量的加法法则及其几何意义,向量加法运算律的作图证明;数的加法对向量加法的负迁移,造成向量加法的意义的理解困难。
四、教学策略分析
1.《高中数学课程标准》倡导自主探索、动手实践、合作交流等学习方式.根据本节课的教学内容和学生自主学习能力相对比较强的特点,以问题串驱动整个课堂的进行,采用启发、引导、探究相结合的教学方法
2为了更直观、形象地突出重点,突破难点,借助多媒体或实物投影仪等信息技术手段,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.
3.数学是一门培养重要思维的学科.因此本堂课我采取了“开放型探究式”教学模式,体现以学生发展为本的精神.从问题提出到问题解决都竭力把探究问题的主动权交给学生,让学生操作实验、直观感知、自主探索、合作交流,使学生全面参与、全员参与、全程参与,真正确立其主体地位.而教师作为数学学习的组织者、引导者、合作者,及时给予点拨和纠正.
f五、教学过程一创设情景
类比导入,引入新知
同学们七年级学习有理数加法时探讨过一个问题,小明从原点出发向东走了2米,再向东走了3米,两次行走后,相对于原点他的最后位置在什么地方?假如小明从原点出发向东走了2米,再沿着东北方向走了3米,这时他两次行走的路程是多少?
师生活动:
教师提问,学生思考回答。从数的加法引入向量的加法。
设计意图
以一个贴近学生生活的实例,引出课题“向量的加法运算及其几何意义”,激发学生学习兴趣。从位移入手,帮助学生清楚认识向量的加法与数的加法在本质上的区别。
(二)合作探究
自主探究,讲授新知问题1:向量的加法如何定义师生活动:r