全球旧事资料 分类
应用一元一次方程“希望工程”义演教学反思
本课的知识技能目标是:借助表格分析复杂问题中的数量关系;情感态度目标是:培养学生建立方程,解决实际问题的能力,发展分析问题解决问题的能力,进一步体会方程模型的作用。
围绕教学目标我设计了如下表格。首先请学生把已知量填到表内,显然空白的学生及成
人的购票数和所得票款就是未知量。引导学生分析这四个未知量中只要任意地设其中一个为
X,那么其余三个量都可以用X来表示。如我们设售学生票数为X张,则其它依次为5X、
(1000X)、8(1000X)。
学生
成人
合计
单价(元)
5
8
不填
票数(张)
X
1000X
1000
票款(元)
5X
81000X)
6950
此题目中的两个等量关系也显而易见,分别是:(1)学生票数成人票数1000张;(2)
学生票款成人票款6950元。学生很容易地列出方程5X8(1000X)6950并求得X350,
1000X650(元);我趁热打铁地提出如下问题:(1)如果票价不变,售出1000张票,可
能得票款6930元吗?(2)可能得票款6932元吗?如果可能,成人票比学生票多售出多少
张?
这时学生的学习热情被调动起来了,纷纷开始讨论,张丽武和张立圣两位同学主动要求
到黑板上板演自己的做法。
解:设售学生票数为X张,则售成人票数为(1000X)张,得方程
5X8(1000X)6930
解得:X10703
因为票数应为整数,所以10703不合题意,即售1000张票,不可能得6930元的票款。
而当票款为6932时,
解:设售学生票数为X张,可得方程为:
5X8(1000X)6932
解得:X356
成人票数为:1000356644(张)
f644356288(张)
因此:可能,成人票比学生票多售出288张。
对两个学生的表现我非常满意。可是我还不肯罢手,进一步提出:“针对这个题目,你
还能提出哪些问题?”使课堂气氛又一次达到高潮。同学们各抒己见,提出的问题五花八门,
其中的几个问题具有代表性,我收集起来展示给全班。
(1)出售1000张票,得票款6950元时,学生票款多少元?成人票款多少元?成人票
款比学生票款多多少元?
(2)出售1000张票,最多能得票款多少元?最少能得多少元?最多比最少多多少元?
(3)出售1000张票,可能得票款8050元吗?可能得4980元吗?
对于第一个问题赵文艳迫不及待的跑到黑板上画出如下表格并列方程求解。
学生成人
合计
单价(元)
5
8
不填
票数(张)Y5(6950Y)81000
票款(元)Y
6950Y
6950
解:设出售1000张票,得学生票款Y元,成人票款(6950Y)元,
Y5(6950Y)81000
解得:Y1750
69501750r
好听全球资料 返回顶部