练,这对于发展学生的解决问题能力同样是十分重要的。
f2.体现解决问题策略多样化。
教材呈现了解决问题的内容,注意体现解决问题策略的多样化。每一个
例题展示了不同学生想出的不同解决办法,使学生了解同一问题可以有不同
的解决方法。练习中的习题,有的情景图中蕴涵有解决问题的多种信息,揭
示了可以从不同角度观察选择信息,采用不同的方法解决问题。例如第3题,
学生可以从先算出每层多少瓶入手解决问题,也可以从先算出每摞多少瓶入
手解决问题,还可以……完全取决于学生观察思考的角度。这些习题使学生
通过自己的分析、思考,寻找一种或两种解决问题的方法,并与同学进行交
流,让学生在不断探索与创造的气氛中发展创新意识。
单元教学目标
知识与技能
1.使学生经历从实际生活中发现问题、提出问题、解决问题的过程,学
会用两步计算解决问题。
2.感受数学在日常生活中的作用,初步形成综合运用数学知识解决问题
的能力。
过程与方法
使学生通过自己的分析、思考,寻找一种或两种解决问题的方法,通过
同学之间的交流,让学生在不断探索与创造的气氛中发展创新意识。
情感态度与价值观
让学生通过数学知识的解决和在生活中的应用,使学生对数学产生兴趣。
体验与他人合作的乐趣,培养良好的学习习惯。
单元教学重难点
重点:两步计算的应用题。
难点:乘法和除法两步计算解决问题。
关键:理解解决问题的过程,懂得每一步算式解决了什么问题。
单元课时安排
解决问题
5课时
实践活动:设计校园1课时
f第九单元数学广角
单元教学内容:第九单元数学广角单元教材分析:和前几册教材的思路相同,本册教材除了在有关单元渗透相应的数学思想方法以外,还专门安排了“数学广角”这一单元来介绍一些数学思想方法,使学生运用这些数学思想方法解决一些简单的实际问题或数学问题。本单元主要是结合实际,使学生初步体会集合和等量代换这两种数学思想方法。集合思想是数学中最基本的思想,甚至可以说,集合理论是数学的基础。从学生一开始学习数学,其实就已经在运用集合的思想方法了。例如,学生在学习数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象,给学生留下的印象更深刻。又如,我们学习过的分类思想和方法实际上就是集合理论的基础。本单元的例1借助学生熟悉的题材,渗透集合的有关思想,并利用直观图的方式求出两个小组的总人数。等量代换是指一个量用与它相等的r