全球旧事资料 分类
,把问题归结为比原本的问题,从而达到化繁为简,化难为易的目的。7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
f8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。10、归纳法:由一般到特殊的推理方法。11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。三、函数、方程、不等式常用的数学思想方法:⑴数形结合的思想方法。⑵待定系数法。⑶配方法。⑷联系与转化的思想。⑸图像的平移变换。四、证明角的相等1、对顶角相等。2、角(或同角)的补角相等或余角相等。3、两直线平行,同位角相等、内错角相等。4、凡直角都相等。5、角平分线分得的两个角相等。6、同一个三角形中,等边对等角。7、等腰三角形中,底边上的高(或中线)平分顶角。8、平行四边形的对角相等。9、菱形的每一条对角线平分一组对角。10、等腰梯形同一底上的两个角相等。11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。12、圆内接四边形的任何一个外角都等于它的内对角。13、同弧或等弧所对的圆周角相等。14、弦切角等于它所夹的弧对的圆周角。15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。16、全等三角形的对应角相等。17、相似三角形的对应角相等。18、利用等量代换。19、利用代数或三角计算出角的度数相等20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。五、证明直线的平行或垂直1、证明两条直线平行的主要依据和方法:⑴、定义、在同一平面内不相交的两条直线平行。⑵、平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。⑶、平行线的判定:同位角相等(内错角或同旁内角),两直线平行。⑷、平行四边形的对边平行。⑸、梯形的两底平行。⑹、三角形(或梯形)的中位线平行与第三边(或两底)
f⑺、一条r
好听全球资料 返回顶部