全球旧事资料 分类
222
3
f22113
解析设椭圆的半焦距为c因为四边形OABC为平行四边形,∵BC∥OA,BC
a3b=OA,所以点C的横坐标为,代入椭圆方程得纵坐标为因为∠OAB=30°,223b3a所以=×,即a=3b,a2=9a2-9c2,23222所以8a2=9c2,所以离心率e=312.y2=2x-1解析抛物线焦点为F10,设弦的端点Ax1,y1,Bx2,y2,中点y1-y2yPx,则y2=4x1,2=4x2,y,1y2作差得y1+y2y1-y2=4x1-x2①将y1+y2=2y,=x1-x2x-1y代入①式,得2y=4,x-1即y2=2x-1.b+2a0,13.1,5解析双曲线的渐近线为bx±ay=0,依题意有即b2a,所b-2a0,c以c2-a24a2,那么e=5又e1,所以e∈1,5.app14.解答证明:设过焦点F2,0的直线AB的方程为x=my+,Ax1,y1,Bx2,2y2.x=my+p,2由消去x,得y2-2pmy-p2=0,
y2=2px,
∴y1y2=-p2p∵BC∥x轴,且点C在准线x=-上,2p∴点C的坐标为-2,y2y22py1kCO====kOA,故AC过原点Opy1x1-215.解答1∵点M到-3,0,3,0的距离之和是4,∴M的轨迹C是长轴长为4,焦点在x轴上,焦距为23的椭圆,x2其方程为+y2=142将y=kx+2代入曲线C的方程,消去y,整理得1+4k2x2+82kx+4=0①设Px1,y1,Qx2,y2,由方程①,82k4得x1+x2=-,xx=②1+4k2121+4k2又y12=kx1+2kx2+2=k2x1x2+2kx1+x2+2③y→→若以PQ为直径的圆过原点,则OP=0,OQ所以x1x2+y1y2=0,6将②、③代入上式,解得k=±266又因k的取值应满足Δ0,4k2-10,k=±代入式知符合题意.即将∴k=±22【难点突破】16.解答1设F1-c0,F2c0c0,因为PF2=F1F2,所以a-c2+b2=2c,整
4
fcccc11理得2a2+-1=0,得=-1舍,或=,所以e=aaa2222由1知a=2c,b=3c,可得椭圆方程为3x+4y2=12c2,直线PF2的方程为y=3x-c.2223x+4y=12c,A,B两点的坐标满足方程组消去y并整理,得5x2-8cx=0解得x1y=3x-c,
x1=0,8=0,2=c得方程组的解x5y1=-3c,
所以AB=
x=5c,33y=5c
8
22
833不妨设Ac,B0,3c,-c,55
8c2+33c+3c2=16c555
5于是MN=AB=2c8圆心-1,3到直线PF2的距离-3-3-3c32+cd==22MN因为d2+22=42,3所以2+c2+c2=16,整理得7c2+12c-52=0426x2y2得c=-舍,或c=2所以椭圆方程为+r
好听全球资料 返回顶部