全球旧事资料 分类
三角公式汇总
πR⒈L弧长R180⒉正弦定理:
112
R2S扇LRR22360
bca2R(R为三角形外接圆半径)si
Asi
Bsi
C
2
⒊余弦定理:a2b
22
c22bccosA
2
b2a2c22accosB
b2c2a2cosA2bc
abc2R2si
Asi
Bsi
C4R
cab2abcosC⒋Sahaabsi
Cbcsi
Aacsi
B
12121212
a2si
Bsi
Cb2si
Asi
Cc2si
Asi
Bprppapbpc2si
B2si
C2si
A
12
其中pabcr为三角形内切圆半径⒌同角关系:⑴商的关系:①tg
yxsi
xcoscoscscsi
sec②ctgcosysi
ycostgr
③si
secr1tgcscxcos


csc
cos
xsi
ctgr

r1ctgsecysi

⑵倒数关系:si
csccossectgctg1⑶平方关系:si
2cos2sec2tg2csc2ctg21
1
f⑷asi
bcosa2b2si
一象限,且tg)
ba
(其中辅助角与点(ab)在同
⒍函数yAsi
xk的图象及性质:(0A0)
21频率f相位x,初相T3⒎五点作图法:令x依次为02求出x与y,22
振幅A,周期T
依点
xy作图
⒏诱导公试si


cos
tg
ctgctgctgctgctgctg
三角函数值等于的同名三角函数值,前面加上一个把
看作锐角时,原三角函数
si
costgsi
costgsi
costgsi
costgsi
costg
值的符号;即:函数名不变,符号看象限
22k
si

2
co
si
si
si
si

tgctgctgctgctg
ctgtgtgtgtg
2
三角函数值等于的异名三角函数值,前面加上一个把
看作锐角时,原三角函数
coscoscoscos

23232
值的符号即:函数名改变,符号看象限
⒐和差角公式
f①si
si
coscossi
③tg
tgtg1tgtg
②coscoscossi
si
④tgtgtg1tgtg其中当ABCπ时
⑤tg有
tgtgtgtgtgtg1tgtgtgtgtgtg
itgAtgBtgCtgAtgBtgC⒑二倍角公式:含万能公式①si
22r
好听全球资料 返回顶部