层抽样的方法进行抽样。解:①将30000人分成5层,其中一个乡镇为一层。②按照样本容量与总体容量的比例及各乡镇的人口比例随机抽取各乡镇应抽取的样本,因为总体个数为30000,样本容量为300,故比例为100∶1,这5个乡镇人口数依次为6000,4000,10000,4000,6000。通过计算,易知各乡镇应抽取的样本数分别为60,40,100,40,60个。③将这300个人组在一起,即得到一组样本。例3:一个单位的职工有500人,其中不到35岁的有125人,35~49岁的有280人,50岁
f以上的有95人。为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?分析:这总体具有某些特征,它可以分成几个不同的部分:不到35岁;35~49岁;50岁以上,把每一部分称为一个层,因此该总体可以分为3个层。由于抽取的样本为100,所以必须确定每一层的比例,在每一个层中实行简单随机抽样。解:抽取人数与职工总数的比是100:500=1:5,则各年龄段(层)的职工人数依次是125:280:95=25:56:19,然后分别在各年龄段(层)运用简单随机抽样方法抽取。答:在分层抽样时,不到35岁、35~49岁、50岁以上的三个年龄段分别抽取25人、56人和19人。【同步训练】1.分层抽样又称为分类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行A.每层等可能抽样B.每层不等可能抽样C.所有层用同一抽样比,等可能抽样D.所有层抽同样多样本容量,等可能抽样2.为了保证分层抽样时,每个个体等可能的被抽取,必须A.不同层以不同的抽样比抽样B.每层等可能的抽样()()
C.每层等可能的抽取一样多个的样本,即若有k层,每抽样x0个,
=
0kD.每层等可能抽取不一样多个样本,样本容量为
i=
Ni(i=1,…,k),即按比N
例分配样本容量,其中:N是总体的总个数,Ni是第i层的个数。3.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段。如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,1r