高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。再利用附表2中的数据列方程组寻找α与β最准确的取值。
1
f一、问题重述
通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。并给出了罐体纵向倾斜变位的示意图和罐体横向偏转变位的截面示意图。请用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。(1)为了掌握罐体变位后对罐容表的影响,利用给出的小椭圆型储油罐(两端平头的椭圆柱体)示意图,分别对罐体无变位和倾斜角为α410的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。(2)对于实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
二、问题分析
本题是一个在罐体变位后重新标定罐容表的问题,就是需要得出变位后油位高度与油料体积的关系,然后在油料高度间隔为1cm或10cm的情况下,算出所有高度所对应的体积值,即可得到新的罐容表标定值。第一问中共做了两次实验,分别为罐体无变位与纵向变位。对于无变位的情况,可以选择合适的体积微元,在油位高度方向积分即可算出油体积与油位高度的关系;对于倾斜角为α41的纵向变位,我们采用二重积分的方法,分三种情况进行计算。先在的实际数据对公式的准确度进行检验,并对比变位前后储油量与油位高度关系的差别。第二问中,将储油罐分成三部分进行计算:中间的圆柱体和两端的球冠体。对于α与β的处理问题,对α、β已经确定的静态储油r