点,∴MF∥AC,MF
D
1AC.2
F
AHGM图2
E
∴MFEG,B同理可证DFMG,∵MF∥AC,MFABAC180同理可得MGABAG180,∴MFAMGA,又∵EG⊥AC,∴EGA90.同理可得DFA90,∴MFADFAMGAEGA,即DFMMGE,又MFEG,DFMG,∴△DFM≌△MGE(SAS),5
C
f∴MDME,再证MD⊥ME:证法一:∵MG∥AB,∴MFAFMG180,即MFAFMDDMEEMG180.又∵△DFM≌△MGE,∴EMGMDF,∴MFAFMDDMEMDF180,其中MFAFMDMDF90∴DME90.即MD⊥ME;证法二:如图2,MD与AB交于点H,∵AB∥MG,∴DHADMG,又∵DHAFDMDFH,即DHAFDM90.∵DMGDMEGME,又∵△DFM≌△MGE,∴FDMGME,∴DME90,即MD⊥ME;●类比探究答:等腰直角三角形.(评分说明:仅答等腰三角形或仅答直角三角形的不得分)
题型二:面积比例问题
典题精练
A
【例4】⑴如图DE∥FG∥BC且ADDFFB设△ABC被分成的三部分的面积分别为S1S2S3求S1:S2:S3____S1DE【解析】∵DE∥FG∥BC,S2∴△ADE∽△AFG∽△ABC,∵ADDFFBGF222∴S△ADE:S△AFG:S△ABCAD:(2AD):(3AD)1:4:9;S3设S△ADE1,则S△AFG4,S△ABC9,BC∴S1S△ADE1,S2S△AFGS△ADE3,S3S△ABCS△AFG5,即S1:S2:S31:3:5.⑵如图,△ABC被线段DE、FG分成面积相等的三部分,即S1S2S3,且DE∥FG∥BC,则DE:FG:BC___________
6
f【解析】∵S1S2,∴S△ADES△AFG1:2∴DE2FG21:2,∴DEFG1:2同理,DE:BC1:3
∴DE:FG:BC1:2:3
⑶如图点D是△ABC边BC延长线上一点,过点C作CE∥AB,作DE∥AC,连接AE,S△ABC9S△CDE4则S△ACE______【解析】∵CE∥AB∴BECD∵DE∥AC∴ACEDECBAC∴△ABC∽△ECD
S△ABC9AB∴S△ECD4CE
2
AB3CE2∵CE∥ABSAB39∴△ABCS△ACECE2S△ACE
∴∴S△ACE6
⑷如图,E,F分别是长方形ABCD的边AB,BC的中点,连接AF,CE,AF与CE交于点G,则
SAGCD________SABCD
【解析】过点G作AB、BC的垂线,连接BG,AC
S矩形ABCDABBC
S△BCE
11111ABBCS△ABFABBCABBC22224
S△AEGS△GCF即AEGNCFGM∴BEGNBFGM
11SGEBFS△BEGS△BFGBEGNBFGM2S△AEG2S△GCF22S△BCE3S△GCF
7
1ABBC4
f∴Sr