四年的预测结果。此外,采用MDA建模的学者还有黄岩和李元旭(2001)、尹侠等(2001)向德伟、(2002)卫建国等、(2002)杨淑娥和徐伟刚、(2003)唐振宇等、(2004)以及贲友红(2005)。
13Logit。Logit模型是采用了一系列的财务指标来预测财务危机发生的概率,然后根据银行、投资者等的风险偏好程度设定风险警戒线,以此对分析对象进行风险定位与决策。
吴世农、卢贤义(2001)选取70家处于财务困境的公司和70家财务正常的公司为样本,首先应用剖面分析和单变量判定分析研究财务困境出现前5年内这两类公司每一年的21个财务指标的差异,最后选定6个财务指标作为预警指标,应用Fisher线性判定分析、多元线性回归分析和Logistic回归分析三种方法分别建立了三种预警模型,并指出应用Logistic回归分析法建立的预警模型误判率最低。
此外,姜秀华与孙铮(2001)讨论了最佳分割点,认为概率01为最佳分割点;乔卓(2002)和齐治平(2002)引入二次项和交叉项进行建模;陈晓和陈治鸿(2000)、宋力和李晶(2004)对财务数据进行调整后建模;张鸣和程涛(2005)、梁琪(2005)、张扬(2005)通过利用主成分分析法对logistic方法进行降维、解决共线性问题后进行了建
第3页
f安康学院论文专用纸
模;顾银宽(2005)则基于Jackk
ife检验进行了建模,均提高了模型预测的准确率。
14核函数方法。罗幼喜等(2005)通过主成分分析法约简建模指标后,采用核函数建模,结果表明模型的性能指标超过传统预测方法,较好地解决了大规模样本集应用问题。
2智能预警模型
智能预警模型则主要是基于神经网络分析的各类模型。神经网络模型是一套人工智慧系统,以模拟生物神经系统的模式,利用不断重复的训练过程,使本身能够透过经验的积累达到学习的效果。
王春峰、万海晖、张维等1999用神经网络法对商业银行财务风险进行了研究,发现神经网络法具有很强的非线性映射能力,其学习经验的能力强:学者杨保安等2001将BP神经网络分析方法运用到银行财务预警的分析中,构建了非线形财务预警模型。
刘洪、何光军(2004)以728个样本、36个财务指标进行财务危机预警研究。他们在传统的判别分析法和逻辑回归分析法基础上,探索应用人工神经网络法进行财务危机预警的研究。结果表明,人工神经网络法的预测准确率高于前两种方法的预测准确率。谢纪刚(2004)等人使用分类集成的方法进行财务危机预警研究,结果发现该方法的预测准确率
第4页
f安康学院论文专用纸
可达到86。
张根明、向晓骥r