全球旧事资料 分类
量,把因变量置于被解释的特殊地位,而且以因变量为随机变量,同时,总假定自变量是非随机的可控变量。在相关分析中,变量间的地位是完全平等的,不仅无自变量和因变量之分,而且相关变量全是随机变量。二、相关分析只限于描述变量间相互依存关系的密切程度,至于相关变量间的定量联系关系则无法明确反映。而回归分析不仅可以定量揭示自变量对应变量的影响大小,还可以通过回归方程对变量值进行预测和控制。相关分析和回归分析是极为常用的两种数理统计方法,在科学研究领域有着广泛的用途。然而,由于这两种数理统计方法在计算方面存在很多相似之处,且在一些数理统计教科书中没有系统阐明这两种数理统计方法的内在差别,从而使一些研究者不能严格区分相关分析与回归分析。最常见的错误是:用回归分析的结果解释相关性问题。例如,作者将“回归直线(曲线)图”称为“相关性图”或“相关关系图”;将回归直线的R2拟合度,或称“可决系数”错误地称为“相关系数”或“相关系数的平方”;根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。相关分析与回归分析均为研究2个或多个变量间关联性的方法,但2种数理统计方法存在本质的差别,即它们用于不同的研究目的。相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。在相关分析中,两个变量必须同时都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析,这是相关分析方法本身所决定的。对于回归分析,其中的因变量肯定为随机变量(这是回归分析方法本身所决定的),而自变量则可以是普通变量(有确定的取值)也可以是随机变量。如果自变量是普通变量,即模型Ⅰ回归分析,采用的回归方法就是最为常用的最小二乘法。如果自变量是随机变量,即模型Ⅱ回归分析,所采用的回归方法与计算者的目的有关。在以
f预测为目的的情况下,仍采用“最小二乘法”(但精度下降最小二乘法是专为模型Ⅰ设计的,未考虑自变量的随机误差);在以估值为目的(如计算可决系数、回归系数等)的情况下,应使用相对严谨的方法(如“主轴法”、“约化主轴法”或“Bartlett法”)。显然,对于回归分析,如果是模型Ⅱ回归分析,鉴于两个随机变量客观上存在“相关性”问题,只是由于回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段,因此,若以预测为目的,最好不提“r
好听全球资料 返回顶部