c,由已知f0f10,c0,c0,即解得33a2bc0,ba.213a3a3a2fx3ax23axf2422fx2x33x2.6分(2)令fx≤x,即2x33x2x≤0,1x2x1x1≥0,0≤x≤或x≥1.21又fx≤x在区间0,m上恒成立,0m≤12分2
另解:设gxfxx2x33x2x0在0m上恒成立即求在0m上gxmax0满足的条件
,
gx6x26x10,x
3333或66
3333gx066是单调增区间3333gx06和6是单调减区间
f①若0m
3333则有0m66
gxmaxg00成立
②若
3333m有gm066331m62
综合得:
③m
33333有g0矛盾6618
12
综上:0m
22(1)设Ax1y1Bx2y2AB中点Mx0y0由AFBF8得x1x2p8x04
p2
2py12px122又2得y1y22px1x2y0ky22px2
pppk所以M4依题意k1p4p2k462
抛物线方程为y8x6分
2
(2)由M2y0及kl令y0得xK2
2
44lAByy0x2y0y0
12y04
又由y8x和lAByy0
4x2得y0
f2y22y0y2y0160
SABF
111222KFy2y1y04y042y01622412124616y0y0y016y044
46令hy016y0y0y00
353hy064y06y06y0
322y03
当hy000y0
323323
当hy00y0
所以y0
32是极大值点,并且是唯一的332323时SABFmax12分93
所以y0
fr