龙源期刊网httpwwwqika
comc
例谈高中数学排列组合解题技巧
作者:何志华来源:《试题与研究教学论坛》2015年第24期
摘要:排列组合是高中数学的重要内容,新课标中概率与统计的增加更突出了排列组合的重要性,历来是高中数学教学的一个难点,其思考方法独特,求解思路灵活,因而在解题中极易出现“重复”或“遗漏”的错误。虽然近几年高考将侧重点放在两个计数原理的考查上,但当对问题类型把握准确时,在解答的准确性上将会有很大的提升,解答速度也会大大提高。本文结合教学实践探讨数学排列组合试题的解题技巧。关键词:高中数学;排列组合;解题技巧排列组合作为高中代数课本的一个独立分支,极具抽象性而成为“教”与“学”难点,有相当一部分题目教者很难用比较清晰简洁的语言讲给学生听,有的即使教者觉得讲清楚了,但是由于学生的认知水平、思维能力在一定程度上受到限制,还不太适应这种极具抽象的运算方法。笔者认为之所以学生“怕”学排列组合,主要还是因为排列组合的抽象性,那么解决问题的关键就是将抽象问题具体化,我们不妨将原题进行一下转换,让学生走进题目当中,成为“演员”,成为解决问题的决策者。为此,笔者就教学过程中的三个难点通过特例作进一步的说明:一、占位子问题例1:将编号为1、2、3、4、5的5个小球放进编号为1、2、3、4、5的5个盒子中,要求只有两个小球与其所在的盒子编号相同,问有多少种不同的方法。一是仔细审题。在转换题目之前先让学生仔细审题,从特殊字眼小球和盒子都已“编号”着手,清楚这是一个“排列问题”,然后对题目进行等价转换。二是转换题目。在审题的基础上,为了激发学生兴趣,使其进入角色,我将题目转换为:让学号为1、2、3、4、5的学生坐到编号为1、2、3、4、5的五张凳子上(凳子已准备好放在讲台前),要求只有两个学生与其所坐的凳子编号相同,问有多少种不同的坐法。三是解决问题。这时我再选另一名学生来安排这5位学生坐位子(学生争着上台,积极性已经得到了极大的提高),班上其他同学也都积极思考(充分发挥了学生的主体地位和主观能动性),努力地“出谋划策”,不到两分钟的时间,同学们有了统一的看法:先选定符合题目特殊条件“两个学生与其所坐的凳子编号相同”的两位同学,有C种方法,让他们坐到与自己编号相同的凳子上,然后剩下的三位同学不坐编号相同的凳子有2种排法,最后根据乘法原理得到结果为2×C20(种)。这样原题也就得到了解决。四是学r