数列求和的基本方法和技巧
关键词:数列求和通项分式法错位相减法反序相加法分组法分组法合并法
数列是高中代数的重要内容,又是学习高等数学的基础在高考和各种数学竞赛中都占有重要的地位数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法1、等差数列求和公式:S
a1a
1
a1d22
q1
a1
2、等比数列求和公式:S
a11qa1a
qq11q1q
自然数方幂和公式:3、S
k2
1
k1
1
4、S
k
k1
2
1
12
16
5、S
k
k1
3
1
122
例求和1+x2+x4+x6+x2
4x≠0
解:∵x≠0
∴该数列是首项为1,公比为x2的等比数列而且有
3项当x2=1即x=±1时和为
3评注:1利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨论.
2要弄清数列共有多少项,末项不一定是第
项.对应高考考题:设数列1,(12),,(1222
2
1
),的前顶和为
s
,则
s
的值。
二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前
项和公式时所用的方法,这种方
第1页共15页1
f法主要用于求数列a
b
的前
项和,其中a
、b
分别是等差数列和等比数列求和时一般在
已知和式的两边都乘以组成这个数列的等比数列的公比q;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
例求和:S
13x5x27x32
1x
1(
x1)………………………①
1
解:由题可知,2
1x
1的通项是等差数列2
-1的通项与等比数列x设xS
1x3x25x37x42
1x
………………………②
的通项之积
(设制错位)(错位相减)
①-②得1xS
12x2x22x32x42x
12
1x
再利用等比数列的求和公式得:1xS
12x
1x
12
1x
1x
∴
S
2
1r