△ABO(AAS)∴CFOA1,AFOB2∴OF1∴C(1,1);(2)证明:过点C作CG⊥AC交y轴于点G,∴∠ACG∠BAC90°,∴∠AGC∠GAC90°.∵∠CAG∠BAO90°,∴∠AGC∠BAO.
f∵∠ADO∠DAO90°,∠DAO∠BAO90°,∴∠ADO∠BAO,∴∠AGC∠ADO.在△ACG和△ABD中
∴△ACG≌△ABD(AAS),∴CGADCD.∵∠ACB∠ABC45°,∴∠DCE∠GCE45°,在△DCE和△GCE中,
,
∴△DCE≌△GCE(SAS),∴∠CDE∠G,∴∠ADB∠CDE;
(3)解:在OB上截取OHOD,连接AH由对称性得ADAH,∠ADH∠AHD.∵∠ADH∠BAO.∴∠BAO∠AHD.∵BD是∠ABC的平分线,∴∠ABO∠EBO,∵∠AOB∠EOB90°.在△AOB和△EOB中,
,
∴△AOB≌△EOB(ASA),∴ABEB,AOEO,∴∠BAO∠BEO,∴∠AHD∠ADH∠BAO∠BEO.∴∠AEC∠BHA.在△AEC和△BHA中,
,
∴△ACE≌△BAH(AAS)∴AEBH2OA∵DH2OD∴BD2(OAOD).
f精选9、(1)证:设AD与l2交于点E,BC与l3交于点F,由已知BF∥ED,BE∥FD,四边形BEDF是平行四边形,BEDF.又ABCD,RtABE≌RtCDF.h1h3
(2)证:作BGl4,DHl4,垂足分别为G、H,
l1
A
l2B
h1
E
l3
F
h2
Dh3
l4
C
在Rt△BGC和Rt△CHD中,BCGDCH180BCD90,CDHDCH90.
BCGCDH.又BGCCHD90,BCCD,
Rt△BGC≌Rt△CHD,CGDHh2.
又
BG
h2
h3,BC2
BG2
CG2
h2
h32
h22
h1
h2
h
21
,
SBC2h1h22h21.
l1
l2B
l3
l4
G
A
h1
E
h2
D
h3
C
H
f(3)解:
32
h1
h2
1,h2
1
32
h1,
S
h1
1
32
h2
2
h21
54
h21
h1
1
54
h1
25
2
45
,
h1
0,h2
0,1
32
h1
0,0
h1
23
.
当
0
h1
25
时,
S
随
h1
的增大而减小;当
25
h1
23
时,
S
随
h1
的增大而增大.
fr