识梳理
a1+a
-11
a1+22da11-q
a1-a
q2①
a1②1-q1-q
=1S13S
-S
-1
≥21111141
-22-3
+1-
+12
-12
+1作业设计1111.B∵a
==
-,
+1
+11111115∴S5=1-2+2-3+…+5-6=1-6=612.C∵a
==
+1-
,
+
+1∴S
=
+1-1=10,∴
=12011113.A12+24+38+…+
+2
111=1+2+…+
+2+4+…+2
111-2
+12=2+11-211=2
2+
+1-2
11=2
2+
+2-2
4.Ca1+a2+…+a
=22
+4=
2+2
+5∴b
=
+2,∴b
的前
项和S
=2
f5.BS17=1-2+3-4+…+15-16+17=9,S33=1-2+3-4+…+31-32+33=17,S50=1-2+3-4+…+49-50=-25,所以S17+S33+S50=16.A由于a
-a
-1=1×2
-1=2
-1,那么a
=a1+a2-a1+…+a
-a
-1=1+2+…+2
-1=2
-17.-628
2a
111解析∵a
+1=,∴=a+22+a
a
+1
11∴a是等差数列且公差d=2
1111
-1
∴a=a+
-1×2=2+2=2,
12∴a
=
9.1473解析100内所有能被3整除的数的和为:S1=3+6+…+99=33×3+99=16832100内所有能被21整除的数的和为:S2=21+42+63+84=210∴100内能被3整除不能被7整除的所有正整数之和为S1-S2=1683-210=1473
=11,1014
-2,
≥23311解析a
+1=3S
,a
+2=3S
+1,11∴a
+2-a
+1=3S
+1-S
=3a
+1,4∴a
+2=3a
+1
≥1.11∵a2=3S1=3,
f1,∴a
=14
33
11.解
=1
-2
,
≥2
1设等差数列a
的首项为a1,公差为d
a1+2d=7,因为a3=7,a5+a7=26,所以2a1+10d=26,a1=3,
-1解得所以a
=3+2
-1=2
+1,S
=3
+2×d=22=
2+2
所以,a
=2
+1,S
=
2+2
2由1知a
=2
+1,1111111-,所以b
=2==4=42a
-12
+1-1
+1
+111111111所以T
=41-2+2-3+…+
-=41-=
+1
+1
,4
+1
即数列b
的前
项和T
=4
+112.解1由已知,当
≥1时,a
+1=a
+1-a
+a
-a
-1+…+a2-a1+a1=322
-1+22
-3+…+2+2=22
+1-1而a1=2,符合上式,所以数列a
的通项公式为a
=22
-12由b
=
a
=
22
-1知S
=12+223+325+…+
22
-1,①从而22S
=123+225+327+…+
22
+1②1①-②得1-22S
=2+23+25+…+22
-1-
22
+1,即S
=93
r