基于网络的故障诊断专家系统的诊断方法,此方法建立基于网络的智能诊断系统,并讨论在建立此系统时的诊断过程和相关困难。146小波分析小波分析法是20世纪80年代中期由法国学者Daubeches和Callet引入信号处理领域而发展起来的数学理论和方法,它能解决许多傅里叶变换难以解决的问题,被认为是傅里叶分析方法的突破性进展。其基本思想是用信号在一簇基函数张成空间上的投影表征该信号。小波分析优于傅里叶之处在于:小波分析在时域和频域同时具有良好的局部化性质,是一种窗口大小即窗口面积固定但其形状、时间窗和频率都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率和较低的时间分辨率,能聚焦到信号的任意细节,对信号的突变有很强的识别能力,能有效地去噪和提取有用信号,被誉为分析信号的显微镜,小波分析在信号处理、图像处理、话音分析、模式识别、量子物理、生物医学工程、计算机视觉、故障诊断及众多非线性科学领域都有广泛的应用。基于小波分析的故障诊断方法是先对信号进行多级小波分解,得到各子带数据,通过对小波变换系数模极大值的检测来实现对信号奇异性的检测,从而确定故障发生的时间。小波变换在故障诊断中的具体应用表现在以下几个方面:利用小波变换检测信号的突变;利用观测信号频率结构的变化;利用脉冲响应函数的小波变换;利用小波变换去噪提取系统波形特征;利用小波网络。虽然小波分析在信号处理方面得到了广泛的应用,但总体上说,小波变换理论和小波变换在故障诊断中的应用还处于发展阶段,主要存在以下问题:1由于小波变换及小波网络中的小波基的选择没有统一标准,选择不同的小波会得出不同的结论,在实际应用中往往根据经验来选择小波,带有一定的主观性;2如何根据信号的特征选择尺度、平移量,用最少的变化后的数据反映信号的特征,
f以减少运算量;如果选择不当,将会增加运算量,降低推理速度,影响效率;3小波网络的新模型基学习算法也是当前研究的热点,近年来有人提出多层结构小波网络和局域连接型的小波网络。由于神经网络的研究正在向计算智能、生物智能方向发展,小波网络的研究也在不断吸收如混沌、进化等其他交叉学科的研究成果。正因为小波网络还在发展中,所以许多问题还有待于深入研究;4小波网络的收敛性、鲁棒性、计算复杂度等还有待于深入研究,小波网络在故障诊断中的硬件实现也是需要进一步探讨和解决的问题。147基于模糊集的诊断方r