全球旧事资料 分类
,切点圆心半径连;切线长度的计算,勾股定理最方便;要想证明是切线,半径垂线仔细辨;是直径,成半圆,想成直角径连弦;弧有中点圆心连,垂径定理要记全;圆周角边两条弦,直径和弦端点连;弦切角边切线弦,同弧对角等找完;要想作个外接圆,各边作出中垂线;还要作个内接圆,内角平分线梦圆;如果遇到相交圆,不要忘作公共弦;内外相切的两圆,经过切点公切线;若是添上连心线,切点肯定在上面;要作等角添个圆,证明题目少困难;辅助线,是虚线,画图注意勿改变;假如图形较分散,对称旋转去实验;基本作图很关键,平时掌握要熟练;解题还要多心眼,经常总结方法显;切勿盲目乱添线,方法灵活应多变;分析综合方法选,困难再多也会减;虚心勤学加苦练,成绩上升成直线;几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。
第4页共5页
f第5页共5页
fr
好听全球资料 返回顶部