122
SOBESOBFx1x2
由已知得
x1SOBE1x11则1∴1SOBFSOBEx2x12x2
设直线EF直线方程为ykx2,联立方程可得:12k2x28kx60
f0∴k2x1x2
x1x3Qx1x2同号∴∴12x2x2
…………………………8分
8k6x1x2212k12k2
则
x设1mx2
x1x22
x1x2
m12
m
32k29∈4236k2
63303303276∪.k2k∈.……………………12分221010102
21Ⅰ当a1时,gxx23xl
x,g′x
2x23x10x
x1或x
11。函数fx的单调增区间为01∞………………3分22
2Ⅱgxx2a1xal
x,
g′x2x2a1
a2x22a1xa2x1xa0xxx
当a≤1,x∈1eg′x≥0gx单调增。gxmi
2a当1ae,x∈1ag′x0gx单调减x∈aeg′x0gx单调增。
gxmi
gaa2aal
a
当a≥e,x∈1eg′x≤0gx单调减,gxmi
gee22a1ea
2aa≤12gxaaal
a1ae…………………………………………8分e22a1eaa≥e
(Ⅲ)令hxl
x
12x1,42x202x
∴hx≤h2l
2
Qx∈2∞
l
x
∴
h′x
304
即
12x14
14112x1x1l
xx1x1
fkfkl
k,∑
11111∑Ll
2l
3l
k2kfkk2l
k
111111111121L21324
2
1
12
1
3
2
2
≥2
1
………………………………………12分
22(Ⅰ)证明:AB为直径,∴∠ACB
π
2
∠CAB∠ABC
π
,
2
Q∠PAC∠ABC∴∠PAC∠CAB
π
2
∴PA⊥ABAB为直径,∴PA为圆的切线……………………4分
(Ⅱ)CE6kED5kAE2mEB3m
QAEEBCEEDm5kBD3mQAEC∽DEBBD4586kBC225m2643k25QCEB∽AED2m2k22m5AD25m80BD4525∴AB10BD45在直角三角形ADB中si
∠BADAB105
Q∠BCE∠BAD∴si
∠BCE
25……………………10分5
3tcosαx223(Ⅰ)y3tsi
α23tcosαx2(Ⅱ)y3tsi
α2
t为参数)……………………………………4分
t为参数)代入x2y21,得
t23cosα3si
αt20,0si
r