练习题
参考答案与试题解析
一.选择题(共10小题)1.【解答】解:设等差数列a
的公差为d,∵a3=7,a5=13,
∴a12d=7,a14d=13,联立解得a1=1,d=3,则a7=13×6=19.故选:D.2.【解答】解:等差数列a
满足a1a3=2a2,则2a2=2a2,解得a2=0.故选:B.3.【解答】解:依题意,数列a
中,a
1a
=2,所以数列a
是首项为1,公差为2的等差数列,所以a6=a1(61)×d=15×2=11.故选:A.4.【解答】解:∵a1a5a7a9a13=100,∴5a7=100,∴a7=20,∵a6a2=12,∴4d=12,∴d=3,∴a7=a16d=20,∴a1=2,故选:B.5.【解答】解:等差数列a
中,a13a8a15=60,可得:5a8=60,解得a8=12,则a2a8a14=a8=12,故选:B.
第3页(共7页)
f6.【解答】解:在三角形A,B,C中,角A,B,C成等差数列,∴2B=AC=πB,解得B=.
则cosB=.
故选:B.
7.【解答】解:由等差数列a
,中,a2a7a9=6,∴3a6=6,解得a6=2.故选:B.
8.【解答】解:等差数列a
中,a1a9=8,
由等差数列的性质可知,
=
=
=52
故选:C.9.【解答】解:设等差数列a
的公差为d,
由S4=0,a5=5,得
,∴
,
∴a
=2
5,
,
故选:A.10.【解答】解:∵等差数列a
中,S
为其前
项和,S3=2,S6=8,
则根据等差数列的性质可得S3,S6S3,S9S6仍成等差数列,即2,82,S98成等差数列,则有2×(82)=2(S98),解得S9=18.故选:B.二.填空题(共5小题)11.【解答】解:由等差数列的性质可知,a2a4=2a3=4,∴a3=2故答案为:212.【解答】解:等差数列a
中,a1=1,a7=19,由等差数列的性质可知,a3a5=a1a7=20
第4页(共7页)
f∴
=70
故答案为:20;7013.【解答】解:设等差数列a
的前
项和为S
,a2=3,S5=10,
∴
,
解得a1=4,d=1,
∴a5=a14d=44×1=0,
S
=
=4
=(
)2,
∴
=4或
=5时,S
取最小值为S4=S5=10.故答案为:0,10.14.【解答】解:a
1=a
2,化为:a
1a
=2,∴数列a
为等差数列,首项为2,公差为2.则a2019=22×2018=4034.故答案为:4034.15.【解答】解;设每人所得成等差数列a
,不妨设d>0.则a1a2=(a3a4a5),a1a2a3a4a5=100,
∴2a1d=(3a19d),5a1
d=100,
联立解得:a1=,d=.
故答案为:,.
三.解答题(共5小题)
16.【解答】解:(I)设等差数列a
的公差为d,∵a2=20,S9=45.∴a1d=20,9a136d=45,
联立解得:a1=25,d=5,
∴a
=255(
1)=30r