《管理运筹学教程》习题参考答案
第一章线性规划
1、解:设每天应生产A、B、C三种型号的产品分别为x1x2x3件。则线性规划模型为:
maxZ405x120x230x3
st
407xx11430xx22
6x350x3
12002000
x1x2x30
2、解:设5种债的投资额分别为x1x2x3x4x5件。则线性规划模型为:
maxZ0065x1009x20045x30055x4005x5
x1x2x3x4x530
x1x218
st
x3x412x2065x3x4
x502x1x2x1x2x3x4x50
3、(1)解:对原问题标准化,令x1=-x1,x3x3x3
maxZx12x24x34x3
2x1x2x3x3x49
st
3x14x1x2
4x3x24
4x3x5x34x3
2530
x1x2x3x3x4x50
(2)解:对原问题标准化,令x1=-x1,x3x3x3
maxZx12x24x34x3
3x12x22x32x3x419
st
4x13x24x34x3x5145x12x24x34x326
x1x2x3x3x4x50
(3)解:对原问题标准化,令x2x2x2
maxZx1x2x2
2x13x2x26
st
x17x2x242x1x2x23
x10x20x20
1
f4、(1)解:首先将线性规划模型标准化得:
maxz2x1x2x3
3x1x2x3x460
st
x1x1
x2x2
2x32x3
x5x6
1020
x1x2x60
cj
XB
b
2
1
3
0
0
0
x1
x2
x3
x4
x5
x6
θi
x4
60
3
1
1
1
0
060
x5
10
1
1
2
0
1
05
x6
20
1
1
2
0
0
1
Z
0
2
1
3
0
0
0
cj
XB
b
x4
55
x3
5
x6
30
Z
15
2
1
3
x1
x2
x3
2515
0
0505
1
2
0
0
05
05
0
0
0
0
x4
x5
x6
θi
1
05
0
0
05
0
0
1
1
0
15
0
cj
XB
b
2
1
3
0
0
0
x1
x2
x3
x4
x5
x6
θi
x2
110353
1
0
2313
0
x3
703
43
0
1
13
13
0
x6
30
2
0
0
0
1
1
Z100313
0
01343
0
最优解为x10,x21103x3703。目标函数值:Z1003
(2)解:首先将线性规划模型标准化得:
maxz5x1x23x32x4
x12x23x34x4x57st2x12x2x32x4x63
x1x2x60
cj
XB
b
x5
7
x6
3
Z
0
5
1
3
2
0
0
θi
x1
x2
x3
x4
x5
x6
1
2
3
4
1
035
2
2
1
2
0
115
5
1
3
2
0
0
2
fcj
5
1
3
XB
b
x1
r