天津市第一中学2019届九年级下学期第三次月考数学试题
一、选择题
1使
有意义的的取值范围是
A
B
C
D
【答案】C【解析】【分析】二次根式有意义的条件解答即可【详解】∵有意义,∴x3≥0,解得:x≥3,故选C【点睛】本题考查了二次根式有意义的条件,要使二次根式有意义,二次根式的被开方数是非负数.
2
的值等于()
A
B
C
D
【答案】A【解析】试题解析根据特殊角的三角函数值可知
故选C
3在人体血液中,红细胞直径约为
A
B
【答案】B
,数据
用科学记数法表示为
C
D
f【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10
,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】00007777×104.故选B【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10
,其中1≤a<10,
为由原数左边起第一个不为零的数字前面的0的个数所决定.
4把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()
A
B
C
D
【答案】D【解析】【分析】根据实物的形状和主视图的概念判断即可.【详解】从正面看是一个等腰三角形,高线是虚线,
观察只有D选项符合,故选D.【点睛】本题考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.
5若一个正六边形的周长为,则该正六边形的面积为
fA
B
C
D
【答案】D
【解析】【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为24,即可求得BC的长,进而根据等边三角形的性质即可求得△OBC的面积,则可求得该六边形的面积.【详解】如图,连接OB,OC,过O作OM⊥BC于M,∵ABCDEF是正六边形,
∴∠BOC×360°60°,
∵OBOC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为24,∴BC24÷64,∴OBBC4,
∴BMBC2,
∴OM
,
∴S△OBC×BC×OM×4×4,
∴该六边形的面积为:4×624.
故选D.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.熟练掌握数形结合思想的应用是解题关键.
6如图,点
在上,
,垂足分别为,
,则的度数为
fA
B
C
D
【答案】B【解析】【分析】由已知条件结合四边形内角和可以求出∠DOE的度数,再由圆周角定理可以求出∠P的度数【详解】∵CD⊥OA,CE⊥OB,∴∠CDO∠CEO90°,∵∠C40°,∴∠AOB360°2×90°40°140°,∴r