全球旧事资料 分类
《运筹学基础》课程简介
运筹学是一门应用科学,现在普遍认为它是近代应用数学的一个分支,它广泛应用现有的科学技术知识和数学方法,提供以数量化为基础的科学方法解决实际中提出的专门问题,为决策者选择最优决策提供定量依据。
运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。然而运筹学的概念和方法的系统提出却是在第二次世界大战期间。当时英、美对付德国的空袭,雷达作为防空系统的一部分,从技术上看是可行的,但实际运用时却并不好用。为此一些科学家开始研究如何合理运用雷达这一类新问题。因为它与研究技术问题不同,就称之为“运用研究”(Operatio
alResearch),简称为OR,这就是运筹学名称的由来。除军事方面的应用研究以外,相继在工业、农业、经济和社会问题等各领域都有应用。与此同时,运筹数学有了飞快的发展,并形成了运筹学的许多分支,如数学规划(线性规划、非线性规划、整数规划、目标规划、动态规划、随机规划等)、图论与网络、排队论(随机服务系统理论)、存贮论、对策论、决策论、维修更新理论、搜索论、可靠性和质量管理等。
另一方面,运筹学又是相对独立的,严格意义上来说又是有别于数学的。它有其特定的研究对象,有自成系统的基础理论,以及相对独立的研究方法和工具。运筹学的发展与社会科学、技术科学和军事科学的发展紧密相关,已经成为工程与管理学科不可缺少的基础性学科。它的方法和实践已在科学管理、工程技术、社会经济、军事决策等方面起着重要的作用,并已产生巨大的经济效益和社会效益。
运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、对模型进行理论分析、设计算法进行求解,根据结果调整模型。因而在学习过程中需掌握这几个方面。
《初等数论》课程简介
先修课程:高中数学,高等代数,数学分析
背景及意义:初等数论是研究整数最基本性质的一个数学分支,它也是数学中最古老的分支之一,至今仍有许多没有解决的问题。初等数论是数学中“理论与实践”相结合最完美的基础课程。近代数学中许多重要思想、概念、方法与技巧都是对整数性质的深入研究而不断丰富和发展起来的。近几十年来,初等数论在计算机科学、组合数学、代数编码、信号的数字处理等领域内得到广泛的应用。在日常生活中,r
好听全球资料 返回顶部