①女②
男①男②女②
男①男②女①
共有12种可能出现的结果,其中“恰好为一男一女”的有8种;∴P=
82=.123
25.(本小题满分8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度y(微克毫升)与服药时间x小时之间的函数关系如图所示(当4x10时,y与x成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克毫升的持续时间为多少小时?解:(1)由图象可知,当0x4时,y与x成正比例关系,设ykx.由图象可知,当x4时,y8,∴4k8,解得:k2;∴y2x0x4又由题意可知:当4x10时,y与x成反比,设y由图象可知,当x4时,y8,∴m4832;∴y
m.x
324x10x324x10.x
即:血液中药物浓度上升时y2x0x4;血液中药物浓度下降下y(2)血液中药物浓度不低于4微克毫升即:y4∴2x4且
324,解得x2且x8;x
∴2x8,即持续时间为6小时.
26.(本小题满分8分)
f如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.解:(1)证明:连接OD,∵点C、D为半圆O的三等分点,∴∠BOC=又∠BAD=
1∠BOD2
1∠BOD2
∴∠BOC=∠BAD∴AE∥OC∵AD⊥EC∴OC⊥EC∴CE为⊙O的切线.(2)四边形AOCD是菱形;理由如下:∵点C、D为半圆O的三等分点∴∠AOD=∠COD=60°∵OA=OD=OC∴△AOD和△COD都是等边三角形∴OA=AD=DC=OC=OD∴四边形AOCD是菱形.27.(本小题满分10分)如图,顶点M在y轴上的抛物线与直线yx1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;
来源
(3)把抛物线与直线yx的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点?解:(1)∵点A是直线yx1与x轴的交点,∴A点为(1,0)∵点B在直线yx1上,且横坐标为2,∴B点为(2,3)∵过点A、B的抛物线的顶点M在y轴上,故设其解析式为:yax2c
f∴
ac0a1,解得:c14ar