习题111.计算下列二阶行列式:(1)
x1x1
1;x
(2)
si
αcosα
cosα.si
α
解(1)
1x
cosα
x
2
1x1.
si
α
(2)
cosα
si
α
si
2αcos2α1.
2.计算下列三阶行列式:
2
(1)3
11
0a0
(2)b
22;12111bb21c;c2
0c;0d0abcababc.a2ab3a2bc
(3)a
(4)a
a
2
解(1)原式2×2×11×3×21×2×11×2×11×3×12×2×25.(2)原式000bd0ac0000ab00cd0.(3)原式bc2ab2a2ca2bac2b2cbacacb.(4)原式aab3a2bcac2abababcacab
a2ababcab3a2bca3.
3.证明下列等式:
a11a21a31
a12a22a32
aa23a1122a32a33a12a13a23a33
a13
a23aa1221a33a31
a23aa1321a33a31
a22.a32
a11
证明
a21a22a31a32
a11a22a33a12a23a31a13a21a32a13a22a31a12a21a33a11a23a32a11a22a33a23a32a12a21a33a23a31a13a21a32a22a31
a11
a22a32
a23aa1221a33a31
a23aa1321a33a31
a22.a32
4.用行列式解下列方程组:
4x3y5(1);3x4y6
2x13x2x31(2)x1x2x36.3xx2x12314353457,D12,D29,解(1)D346436
1
f所以
x
23
(2)D1
1
D12D9,y2.D7D7131
3
11
123,D1621111
11
123,2669;1
21
231
D216146,D313123
所以
x1
DD1D1,x222,x333.DDD
习题121.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1234;(3)3421;(2)4132;(4)2413;
(5)13L2
124L2
;(6)13L2
12
2
2L2.解(1)是标准排列,其逆序数为0;(2)逆序有(41)(43)(42)(32),,,,所以逆序数为4.(3)逆序有(32)(31)(42)(41)(21),,,,所以逆序数为5.(4)逆序有(21)(41)(43),,,所以逆序数为3.(5)逆序有(32)(52)(54),(72)(74)(76),,…………………(2
12)(2
14)(2
16),,,…,2
12
2)(所以逆序数为(6)逆序有(32)(52)(54),…………………,,,…,2
12
2)((2
12)(2
14)(r