线性代数第一章习题
题型一:题型一:求逆序数
113L2
12
2
2L2
题型二:题型二:求系数或常数项
5x1221xx133
2设行列式D
x23213x
,则D的展开式中,x4的系数为___x3的系数为___
x10x223x3多项式fx中的常数项是()710431
A3
71
C
x
15D15
B3
题型三:题型三:求fx根的个数根的个数
x24记行列式x13x24x3x24x55x7x3为fx则方程fx0的根的个数为()3x54x32x22x12x22x33x34x
2A1BC3D4题型四:题型四:求元素值由比较复杂的数字构成的行列式
321533205357228472184
103100204199200395301300600
f题型五:题型五:求特殊行列式的值1aa0011aa0D5011aa00100a1100
000
1aa11a
LL
0
000Ma
1a
11a1a2011a2D
MMM000000011L1101L1110L1D
MMMOM111L000D
M
0L0OML1a
1
L
1
111M1
111L100L00100L0200MOMMMM
10L000000L000
题型六:题型六:求代数余子式
31125134D,求A313A322A332A342011153311D
1M1320M0503M0L2
1L0L0求A11A12LA1
OML
f题型七:题型七:根据已知行列式的值求解另一行列式的值
a1如果a2a3
b1b2b3
c1
a13b1
b12c1b22c2b32c3
c1a1c2a2_____c3a3
c2m则a23b2c3a33b3
题型八:题型八:Va
dermo
de行列式
求解下列方程1xx
2
1aa
2
1bb1
2
1cc2c31x21xx2
2xx222322333
0
x3
a3
b3
1x31xx3
2xx3
1x41
2x4x432x4x4
D
x11xx1xx12
2131
题型九:题型九:用克拉默法则求解多元线性方程组5x16x21x5x6x0123x25x36x40x35x41问λ为何值时,齐次线性方程组(1λ)x12x24x302x13λ)x2x30xxλ)x0312(1有非零解?题型十题型十:利用行列式的基本性质来求行列式的值
a10四阶行列式0b4
0a2b30
0b2a30
b10的值等于()0a4Ba1a2a3a4b1b2b3b4Da2a3b2b3a1a4b1b4
Aa1a2a3a4b1b2b3b4Ca1a2b1b2a3a4b3b4y行列式xxyAC2x3y32x3y3xxyyxyyxBD
2x3y32x3y3
fr