全球旧事资料 分类
运用菱形的性质解决探究性问题
感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.
解析:探究:△ADE与△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即
可证明△ADE≌△DBF;拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.
解:探究:△ADE与△DBF全等.∵四边形ABCD是菱形,∴AB=AD∵AB=BD,∴AB=AD=BD,∴△ABD为等边三角形,∴∠DAB=∠ADB=60°,∴∠EAD=∠FDB=120°∵AE=DF,∴△ADE≌△DBF;
拓展:∵点O在AD的垂直平分线上,∴OA=OD∴∠DAO=∠ADB=50°,∴∠EAD=∠FDB=130°∵AE=DF,AD=DB,∴△ADE≌△DBF,∴∠DEA=∠AFB=32°,∴∠EDA=∠OAD-∠DEA=18°
方法总结:本题考查了菱形的性质、等
边三角形的判定和性质以及全等三角形的
判定和性质的综合运用,解题时一定要熟悉
相关的基础知识并进行联想.
探究点二:菱形的面积
已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是
A.163
B.83
C.43
D.8
解析:∵四边形ABCD是菱形,∴AB
=BC,OA=12AC=2,OB=12BD,AC⊥BD,
∠BAD+∠ABC=180°∵∠BAD=120°,∴∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=4,∴OB=AB2-OA2=
f42-22=23,∴BD=2OB=43,∴S菱形ABCD=12ACBD=12×4×43=83故选B
方法总结:菱形的面积有三种计算方法:①将其看成平行四边形,用底与高的积来求;②对角线分得的四个全等三角形面积之和;③两条对角线的乘积的一半.
三、板书设计1.菱形的性质菱形的四边条都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.
2.菱形的面积S菱形=边长×对应高=12aba,b分别是两条对角线的长
通过剪纸活动让学生主动探索菱形的性质,大多数学生能全部得到结论,少数需要教师加以引导.但是学生得到的结论,有一些是他们的猜想,是否正确还需要证明,因此问题就上升到证明这个环节.在整个新知生成过程中,探究活动起了重要的作用.课堂中学生始终处于r
好听全球资料 返回顶部