=16,即x+22=16,解得x=-6;当x0时,fx=16,即x-22=16,解得x=6故所求x的值为-6或620题:解析7p真,则指数函数fx=2a-6x的底数2a-6满足02a-61,所以3a2
q真,令gx=x2-3ax+2a2+1,易知其为开口向上的二次函数.因为x2-3ax+2a2+1=0的两根均大于3,所以①Δ=-3a2-42a2+1=a2-40,a-2或a2;②对称轴x-3a3a=-=3;③g30,即32-9a+2a2+1=2a2-9a+100,所以a-22a-50所225以a2或a2
f3a3,由25a2或a2,
a-2或a2,5得a2
75p真q假,由3a及a≤,得a∈227557p假q真,由a≤3或a≥及a,得a≤3或a≥222257综上所述,实数a的取值范围为,3∪,+∞.2221题:解析11因为f′x=,所以f′1=1x
故切线方程为y=x-1al
x2g′x=2x-+-a,xxal
x令Fx=x-+-a,则y=Fx在1,+∞上单调递增.xxx2-l
x+a+1F′x=,则当x≥1时,x2-l
x+a+1≥0恒成立,x2即当x≥1时,a≥-x2+l
x-1恒成立.1-2x2令Gx=-x2+l
x-1,则当x≥1时,G′x=0,x故Gx=-x2+l
x-1在1,+∞上单调递减.从而Gxmax=G1=-2故a≥Gxmax=-23证明:gx=x-a2+l
x-a2=2a2-2x+l
xa+x2+l
2x,x-l
x2令ha=2a2-2x+l
xa+x2+l
2x,则ha≥21x-1令Qx=x-l
x,则Q′x=1-=,显然Qx在01上单调递减,在1,+∞xx上单调递增,则Qxmi
=Q1=11则gx=ha≥2
fffr