全球旧事资料 分类
角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是②图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
DC
H
E
G
F
b
a
A
c
B
ba
c
acb
bca
ca
b
AaD
bc
c
E
a
B
bC
常见方法如下:
方法一:4S
S正方形EFGH

S正方形ABCD

4

12
ab

b

a2
c2,化简可证.a2
b2
c2
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为
S41abc22abc22
大正方形面积为Sab2a22abb2
所以a2b2c2
方法三:
S梯形

1a2
ba
b

S梯形

2SADE

SABE

2
1ab2

1c22
,化简得证:
a2
b2

c2
3勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形
的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形
4勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C90,则ca2b2,bc2a2,
ac2b2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5勾股定理的逆定理
如果三角形三边长a,b,c满足a2b2c2,那么这个三角形是直角三角形,其中c为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2b2与较长边的平方c2作比较,若它们相等时,以a,b,
c为三边的三角形是直角三角形;若a2b2c2,时,以a,b,c为三边的三角形是钝角三角形;若a2b2c2,时,以a,b,c为三边的三角形是锐角三角形;
f②定理中a,b,c及a2b2c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足
a2c2b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2b2c2中,a,b,c为正整数时,r
好听全球资料 返回顶部