习题二解答
(一)
1用初等变换把下面矩阵化为简化行阶梯形矩阵:
1221
12
33
1
3443
0231
2034
3
0471
11343
33
3
5
4
1
22326
33421
23137
412024
32830
2374
3
123452345
5452
1133
6021212230114
1203
7471100112
231
4
解:1
113
8123137111
122112211221
233
1
0
11
3
0
1
1
3
344302260000
1221100501130113
00000000
02310105
20
3
4
3
0
0
13
04710000
1134311020
33354
1
0
0
120
2232600001
3342100000
2313710202
41
2
0240110
3
3283000014
2374
3
00
0
0
0
1
f12341002
52345010
3
54520010
11331000
6021201001223001001140001
12031021
747
1
1001
1
2
01120000
231
4
000
0
113101
8123012137000
111
000
2设
a11a21a31
100
Aa12
a22
a32
,
P1
0
0
1,
a13a23a33
010
100
100
P2030,P3010,
001
401
计算PiA及APii123
a11a21a31
解:P1Aa13
a23
a33
a12a22a32
a11a21a31
P2A3a12
3a22
3a32
a13a23a33
a11
P3
A
a12
4a11a13
a21a224a21a23
a31
a32
4a31a33
2
fa11a31a21
AP1
a12
a32
a22
a13a33a23
a113a21a31
AP2a12
3a22
a32
a133a23a33
a114a31a21a31
AP3a124a32
a22
a32
a134a33a23a33
3.若对可逆矩阵A施行下列初等变换:
1交换矩阵A的第i行与第j行;
2将A的第i行乘以非零常数k3A的第j行各元素加上第i行对应元素的k倍,
则A1相应地发生了什么变化?
解:1A1Eij
2A1Ei1k
3A1Ejik
4设1234
A23455452
1求可逆矩阵P使PA为简化行阶梯形矩阵;2求可逆矩阵Q使QAT为简化行阶梯形矩阵
解:1
1234
1234100
A2345r22r10123210A
5452
5452001
3
f1234100100
r35r1012
3
0
10210A
061018501001
1234100100100
r36r201230
1
0
0
10210A
0020061501001
1234100100100100
r201230100
1
0
0
10210A
0020001061501001
12
r3
10
21
32
4130
01
01
0
0
01
0100
01
01
0
0
0010010210A
0
0
1
0
0
0
1
0
0
10615010
01
2
1234100100100100100100
r22r30
1
0
30
1
20
1
0
0
1
00
1
0
0
10210A
001000
1
0
0
1
0
0
10615010
01
r