全球旧事资料 分类
习题二解答
(一)
1用初等变换把下面矩阵化为简化行阶梯形矩阵:
1221
12
33
1


3443
0231
2034
3


0471
11343
33
3
5
4
1


22326
33421
23137
412024
32830
2374
3

123452345
5452
1133
6021212230114
1203
7471100112
231
4

解:1
113
8123137111
122112211221
233
1


0
11
3


0
1
1
3

344302260000
1221100501130113
00000000
02310105
20
3
4
3


0
0
13
04710000
1134311020
33354
1


0
0
120
2232600001
3342100000
2313710202
41
2
0240110
3


3283000014
2374
3

00
0
0
0

1
f12341002
52345010
3


54520010
11331000
6021201001223001001140001
12031021
747
1
1001
1
2


01120000
231
4

000
0

113101
8123012137000
111
000
2设
a11a21a31
100
Aa12
a22
a32


P1

0
0
1,
a13a23a33
010
100
100
P2030,P3010,
001
401
计算PiA及APii123
a11a21a31
解:P1Aa13
a23
a33

a12a22a32
a11a21a31
P2A3a12
3a22
3a32

a13a23a33
a11
P3
A


a12
4a11a13
a21a224a21a23
a31
a32

4a31a33
2
fa11a31a21
AP1


a12
a32
a22

a13a33a23
a113a21a31
AP2a12
3a22
a32

a133a23a33
a114a31a21a31
AP3a124a32
a22
a32

a134a33a23a33
3.若对可逆矩阵A施行下列初等变换:
1交换矩阵A的第i行与第j行;
2将A的第i行乘以非零常数k3A的第j行各元素加上第i行对应元素的k倍,
则A1相应地发生了什么变化?
解:1A1Eij
2A1Ei1k
3A1Ejik
4设1234
A23455452
1求可逆矩阵P使PA为简化行阶梯形矩阵;2求可逆矩阵Q使QAT为简化行阶梯形矩阵
解:1
1234
1234100
A2345r22r10123210A
5452
5452001
3
f1234100100
r35r1012
3



0
10210A
061018501001
1234100100100
r36r201230
1
0

0
10210A
0020061501001
1234100100100100
r201230100
1
0

0
10210A
0020001061501001



12
r3

10
21
32
4130
01
01
0

0
01
0100
01
01
0

0
0010010210A
0
0
1
0
0
0
1

0
0
10615010
01

2


1234100100100100100100
r22r30
1
0
30
1
20
1
0

0
1
00
1
0

0
10210A
001000
1

0
0
1

0
0
10615010
01

r
好听全球资料 返回顶部