线性代数第二章习题解线性代数第二章习题解第二章
习题一
A组1计算下列二阶行列式(1)
2169a5(2)0(3)212812a
bx11ab2ba2(4)2x3x2122bxxx1
2计算下列三阶行列式
123
(1)3
111
(2)31
12182766618231071k034k001
458950a00c00d0
101
(3)3
504
(4)b
3当k取何值时,1k
k0
34k0k20k030,1
得
解:1k
k24k30,
所以k1或k3。4求下列排列的逆序数解:1τ513240112152τ42631501024183τ7654321654321214τ367152840003240413
5下列各元素乘积是否是五阶行列式aij中一项如果是该项应取什么符号解:2不是因为a11a22a33a45a51中有俩个元素在第一列3是对应项为1
τ(24513)
a12a24a31a45a53
所以该项应取负号。
τ241531201
6选择ij使a13a2ia34a42a5j成为五阶行列式aij中带有负号的项
f解当ij15时τ3142520103当ij51时τ3542123218所以i1j58利用行列式性质计算下列行列式
是奇排列是偶排列
解1
12
31231232r1r22034r2r30346r1r311103200242732754344310004273271427327c3c2c12000543443103254344310007216211721621
21
2
2461014
342721621
11003271132711327c3c21032100443105214432r1r210501211105×294110062111621
1111r1r3
0
0
294
1
3
1
1
1
111111111
1rr02001i1i2340020810002
1203554832111201640210137
4
2240112014r1r241354135023r1r323123312302r1r420512051012011642r2r4020105021101201164c3c4010021002700
1r4r2022r4r300
120116402501050013701100024627012027
17r3r402500
f1x111x101x10111x11c2c1x1x01r1r20x0022(5)111y1c4c301y1r3r401y11111y01y1y000yxx101x10101000100r2r3xx2y201y100y1000y000yaababcabcdabcdar1ri0bacabdabc
(6)
a2ab3a2bc4a3b2cdi23402a3a2b4a3b2ca3ab6a3bc10a6b3cdr