阶序列的波动甚微弱(有可能波动幅度也
不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。而相对处于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。协整检验方法的文献综述:1Kao1999、Kaoa
dChia
g2000利用推广的DF和ADF检验提出了检验面板协整的方法这种方法零假设是没有协整关系并且利用静态面板回归的残差来构建统计量。2Pedro
1999在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。和Kao的方法不同的是Pedro
i的检验方法允许异质面板的存在。3Larsso
etal2001发展了基于Joha
se
1995向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。我们主要采用的是Pedro
i、Kao、Joha
se
的方法。
f通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差是平稳的。因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。这时,我们或许还想进一步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。但如果变量之间不是协整(即非同阶单整)的话,是不能进行格兰杰因果检验的,不过此时可以先对数据进行处理。引用张晓峒的原话,“如果y和x不同阶,不能做格兰杰因果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济意义。”下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即是通过概率或者分布函数的角度体现出来的:在所有其它事件的发生情况固定不变的条件下,如果一个事件X的发生与不发生对于另一个事件Y的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺序(A前B后),那么我们便可以说X是Y的原因。考虑最简单的形式,Gra
ger检验是运用F统计量来检验X的滞后值是否显著影响Y(在统计的意义下,且已经综合考虑了Y的滞后值;如果影响不显著,那么称X不是Y的“Gra
ger原因”(Gra
gercause);如果影响显著,那么称X是Y的“Gra
ger原因”。同样,这也可以用于检验Y是X的“原因”,检验Y的滞后值是否影响X(已经考虑了X的滞后对X自身的影响)。Eviews好像没有在POOL窗口中提供Gra
gercausalitytest,而只有u
itroottest和coir